[1] |
CHEN M H, ZHAO S, LIU H F, et al. Adversarial-learned loss for domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3521-3528.
DOI
URL
|
[2] |
JIANG X, LAO Q C, MATWIN S, et al. Implicit class-conditioned domain alignment for unsupervised domain adaptation[C]// The 37th International Conference on Machine Learning. New York: ACM, 2020: 4816-4827.
|
[3] |
ZHANG X L, SONG H H, ZHANG K H, et al. Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning[J]. Neurocomputing, 2020, 398: 531-538.
DOI
URL
|
[4] |
KIM H J, LEE D. Image denoising with conditional generative adversarial networks (CGAN) in low dose chest images[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161914.
DOI
URL
|
[5] |
JOSE A, FRANCIS A. Reversible colour density compression of images using cGANs[EB/OL]. (2021-06-19) [2022-07-04]. https://arxiv.org/abs/2106.10542.
|
[6] |
黄凯奇, 赵鑫, 李乔哲, 等. 视觉图灵: 从人机对抗看计算机视觉下一步发展[J]. 图学学报, 2021, 42(3): 339-348.
|
|
HUANG K Q, ZHAO X, LI Q Z, et al. Visual Turing: the next development of computer vision in the view of human- computer gaming[J]. Journal of Graphics, 2021, 42(3): 339-348 (in Chinese).
|
[7] |
林晓, 屈时操, 黄伟, 等. 显著区域保留的图像风格迁移算法[J]. 图学学报, 2021, 42(2): 190-197.
|
|
LIN X, QU S C, HUANG W, et al. Style transfer algorithm for salient region preservation[J]. Journal of Graphics, 2021, 42(2): 190-197 (in Chinese).
|
[8] |
任好盼, 王文明, 危德健, 等. 基于高分辨率网络的人体姿态估计方法[J]. 图学学报, 2021, 42(3): 432-438.
|
|
REN H P, WANG W M, WEI D J, et al. Human pose estimation based on high-resolution net[J]. Journal of Graphics, 2021, 42(3): 432-438 (in Chinese).
|
[9] |
李彬, 王平, 赵思逸. 基于双重注意力机制的图像超分辨重建算法[J]. 图学学报, 2021, 42(2): 206-215.
|
|
LI B, WANG P, ZHAO S Y. Image super-resolution reconstruction based on dual attention mechanism[J]. Journal of Graphics, 2021, 42(2): 206-215 (in Chinese).
|
[10] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
DOI
URL
|
[11] |
KANG M, PARK J. Contragan: contrastive learning for conditional image generation[J]. Advances in Neural Information Processing Systems, 2020, 33(1): 21357-21369.
|
[12] |
KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 4396-4405.
|
[13] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-04) [2022-07-14]. https://arxiv.org/abs/1411.1784.
|
[14] |
MIYATO T, KOYAMA M. cGANs with projection discriminator[EB/OL]. (2018-08-15) [2022-07-14]. https://arxiv.org/abs/1802.05637.
|
[15] |
SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]// The 30th International Conference on Neural Information Processing Systems. Barcelona: MIT Press, 2016: 2234-2242.
|
[16] |
ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5967-5976.
|
[17] |
LI C, WAND M. Combining Markov random fields and convolutional neural networks for image synthesis[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2479-2486.
|
[18] |
HU S M, LIANG D, YANG G Y, et al. Jittor: a novel deep learning framework with meta-operators and unified graph execution[J]. Science China Information Sciences, 2020, 63(12): 1-21.
|
[19] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI
URL
|
[20] |
TALEBI H, MILANFAR P. NIMA: neural image assessment[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3998-4011.
DOI
URL
|
[21] |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2242-2251.
|
[22] |
CHEN R, HUANG W, HUANG B, et al. Reusing discriminators for encoding: Towards unsupervised image-to-image translation[C]// The 33rd IEEE/CVF conference on computer vision and pattern recognition. Washington: IEEE Computer Society Press, 2020: 8168-8177.
|