欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1065-1079.DOI: 10.11996/JG.j.2095-302X.2023061065

• 综述 • 上一篇    下一篇

基于机器学习的计算机辅助帕金森疾病分类预测研究综述

温金玉(), 方美娥()   

  1. 广州大学计算机科学与网络工程学院元宇宙研究院,广东 广州 511400
  • 收稿日期:2023-06-27 接受日期:2023-09-12 出版日期:2023-12-31 发布日期:2023-12-17
  • 通讯作者: 方美娥(1974-),女,教授,博士。主要研究方向为智能图形学、3D视觉和AI医学影像分析。E-mail:fme@gzhu.edu.cn
  • 作者简介:

    温金玉(1992-),女,博士研究生。主要研究方向为基于医学影像的计算机辅助诊断。E-mail:wjy1361120721@163.com

  • 基金资助:
    国家自然科学基金项目(62072126)

A review of computer-aided classification prediction of Parkinson's disease based on machine learning

WEN Jin-yu(), FANG Mei-e()   

  1. Metaverse Research Institute, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou Guangdong 511400, China
  • Received:2023-06-27 Accepted:2023-09-12 Online:2023-12-31 Published:2023-12-17
  • Contact: FANG Mei-e (1974-), professor, Ph.D. Her main research interests cover intelligent graphics, 3D vision and AI medical image analysis. E-mail:fme@gzhu.edu.cn
  • About author:

    WEN Jin-yu (1992-), PhD candidate. Her main research interest covers computer aided diagnosis based on medical image.
    E-mail:wjy1361120721@163.com

  • Supported by:
    National Natural Science Foundation of China(62072126)

摘要:

帕金森疾病(PD)是世界卫生组织认定的十大疑难病症之一,对患者和家庭造成巨大负担。目前,治疗只能在一定程度上缓解临床症状,无法完全治愈。因此,早期辅助诊断对PD患者有着十分重要的现实意义。本研究综合分析了国内外PD分类预测的计算机辅助诊断技术,并梳理了利用机器学习模型辅助早期检测PD的研究工作,以指导早期干预和防止病情进展。常用的预测方法包括数据预处理、特征选择和分类。在数据量较大或数据复杂性较高的情况下,传统机器学习方法不具优势,因此采用深度学习或改进的机器学习方法更有助于提高预测准确度。此外,PD患者合并认知能力障碍的脑结构影像诊断也备受关注。认知功能障碍研究是有一个相对渐进的过程,早期筛查并尽早进行相关干预显得十分必要。未来的研究应深入挖掘基于机器学习方法的计算机辅助诊断技术,将其应用于PD的早期分类预测,以提高医生诊断准确率和提升诊疗质量。

关键词: 帕金森疾病, 计算机辅助诊断, 疾病预测, 进展预测, 机器学习

Abstract:

Parkinson's disease (PD) is among the top ten most challenging diseases according to the World Health Organization, placing a substantial burden on patients and their families. Currently, treatment can only offer partial relief from clinical symptoms and cannot achieve a complete cure. Therefore, early auxiliary diagnosis holds significant practical significance for PD patients. This research conducted a comprehensive analysis of computer-aided diagnosis techniques for PD classification prediction both domestically and internationally. It also summarized research endeavors utilizing machine learning models to assist in the early detection of PD, aiming to guide early intervention and prevent disease progression. Common prediction methods involved data preprocessing, feature selection, and classification. Traditional machine learning methods might not be as effective when dealing with large datasets or high data complexity, making deep learning or improved machine learning methods more promising for improving prediction accuracy. Furthermore, there has been a growing focus on diagnosing brain structural images of PD patients with cognitive impairment. Research on cognitive dysfunction followed a progressive trajectory, emphasizing the need for early screening and timely intervention. Future research should further explore computer-assisted diagnostic techniques based on machine learning methods and apply them to the early classification prediction of PD, aiming to enhance the accuracy of medical diagnosis and elevate the quality of diagnosis and treatment.

Key words: Parkinson's disease, computer-aided diagnosis, prediction of disease, progress prediction, machine learning

中图分类号: