图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1065-1079.DOI: 10.11996/JG.j.2095-302X.2023061065
收稿日期:
2023-06-27
接受日期:
2023-09-12
出版日期:
2023-12-31
发布日期:
2023-12-17
通讯作者:
方美娥(1974-),女,教授,博士。主要研究方向为智能图形学、3D视觉和AI医学影像分析。E-mail:作者简介:
温金玉(1992-),女,博士研究生。主要研究方向为基于医学影像的计算机辅助诊断。E-mail:wjy1361120721@163.com
基金资助:
Received:
2023-06-27
Accepted:
2023-09-12
Online:
2023-12-31
Published:
2023-12-17
Contact:
FANG Mei-e (1974-), professor, Ph.D. Her main research interests cover intelligent graphics, 3D vision and AI medical image analysis. E-mail:About author:
WEN Jin-yu (1992-), PhD candidate. Her main research interest covers computer aided diagnosis based on medical image.
E-mail:wjy1361120721@163.com
Supported by:
摘要:
帕金森疾病(PD)是世界卫生组织认定的十大疑难病症之一,对患者和家庭造成巨大负担。目前,治疗只能在一定程度上缓解临床症状,无法完全治愈。因此,早期辅助诊断对PD患者有着十分重要的现实意义。本研究综合分析了国内外PD分类预测的计算机辅助诊断技术,并梳理了利用机器学习模型辅助早期检测PD的研究工作,以指导早期干预和防止病情进展。常用的预测方法包括数据预处理、特征选择和分类。在数据量较大或数据复杂性较高的情况下,传统机器学习方法不具优势,因此采用深度学习或改进的机器学习方法更有助于提高预测准确度。此外,PD患者合并认知能力障碍的脑结构影像诊断也备受关注。认知功能障碍研究是有一个相对渐进的过程,早期筛查并尽早进行相关干预显得十分必要。未来的研究应深入挖掘基于机器学习方法的计算机辅助诊断技术,将其应用于PD的早期分类预测,以提高医生诊断准确率和提升诊疗质量。
中图分类号:
温金玉, 方美娥. 基于机器学习的计算机辅助帕金森疾病分类预测研究综述[J]. 图学学报, 2023, 44(6): 1065-1079.
WEN Jin-yu, FANG Mei-e. A review of computer-aided classification prediction of Parkinson's disease based on machine learning[J]. Journal of Graphics, 2023, 44(6): 1065-1079.
数据集名称 | 数据集信息 | 数据链接 |
---|---|---|
Parkinson's Progression Markers Initiative (PPMI) | PPMI是一个大型、长期的研究项目,旨在对PD的起源、发展和治疗方法进行研究。PPMI提供了包括来自患者和健康控制组的临床、影像和生物标志物数据在内的多种数据类型 | https://www.ppmi-info.org/ |
Parkinson's Disease Data Set | UCI机器学习仓库中的帕金森病数据集,包含了54例PD患者和42名健康人的特征数据,包括声音特征、病情评估和真实测量值 | https://archive.ics.uci.edu/ml/datasets/parkinsons |
Parkinson's Telemonitoring Data Set | 包含了来自波特兰地区PD患者的移动传感器数据和临床评分 | https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Telemonitoring |
Kolkata帕金森病数据集 | 一个基于印度加尔各答地区的病例数据集,包含了不同性别和年龄组的PD患者的特征数据 | https://www.kaggle.com/somdipdey/kolkata-parkinsons-database |
Digital Biomarker DREAM Challenge Dataset | Digital Biomarker DREAM Challenge是一个公开的数据竞赛,旨在开发基于传感器数据的PD早期检测模型。该竞赛提供了一系列模拟PD患者和健康人的包含了来自PD患者和健康人的运动和心率数据 | https://www.synapse.org/#!Synapse:syn20825167 |
Parkinson's Disease Detection | 包含了PD患者和健康人的声音样本,可用于PD的声音诊断研究 | https://www.kaggle.com/vikasukani/parkinsons-disease-detection |
Movement Disorder Society-Unified Parkinson's-Disease Rating Scale (MDS-UPDRS) | MDS-UPDRS是一种PD的临床评估工具,用于评估患者的病情。这个评分量表的数据可以用于研究不同特征与疾病严重程度之间的关系 | https://www.movementdisorders.org/MDS/About/Movement-Disorder-Society.htm |
Open Parkinson's Disease Dataset (OPDD) | OPDD是一个由美国康奈尔大学的研究人员收集和分享的数据集。其包含来自60例PD患者和60名健康人的运动传感器数据、运动特征、身体特征和语音特征等信息 | http://opdd.net/ |
The Parkinson's Telemonitoring Study (PDMonitor) | 该数据集来自于一项基于移动传感器的远程监测研究,收集了PD患者的传感器数据、医学评估和患者自述等信息。该数据集提供了实时、连续的运动特征和临床评估数据 | 具体链接和可用性需要通过康奈尔大学的相关研究团队进行申请 |
表1 帕金森疾病相关研究常用数据集
Table 1 Commonly used datasets for Parkinson's disease-related research
数据集名称 | 数据集信息 | 数据链接 |
---|---|---|
Parkinson's Progression Markers Initiative (PPMI) | PPMI是一个大型、长期的研究项目,旨在对PD的起源、发展和治疗方法进行研究。PPMI提供了包括来自患者和健康控制组的临床、影像和生物标志物数据在内的多种数据类型 | https://www.ppmi-info.org/ |
Parkinson's Disease Data Set | UCI机器学习仓库中的帕金森病数据集,包含了54例PD患者和42名健康人的特征数据,包括声音特征、病情评估和真实测量值 | https://archive.ics.uci.edu/ml/datasets/parkinsons |
Parkinson's Telemonitoring Data Set | 包含了来自波特兰地区PD患者的移动传感器数据和临床评分 | https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Telemonitoring |
Kolkata帕金森病数据集 | 一个基于印度加尔各答地区的病例数据集,包含了不同性别和年龄组的PD患者的特征数据 | https://www.kaggle.com/somdipdey/kolkata-parkinsons-database |
Digital Biomarker DREAM Challenge Dataset | Digital Biomarker DREAM Challenge是一个公开的数据竞赛,旨在开发基于传感器数据的PD早期检测模型。该竞赛提供了一系列模拟PD患者和健康人的包含了来自PD患者和健康人的运动和心率数据 | https://www.synapse.org/#!Synapse:syn20825167 |
Parkinson's Disease Detection | 包含了PD患者和健康人的声音样本,可用于PD的声音诊断研究 | https://www.kaggle.com/vikasukani/parkinsons-disease-detection |
Movement Disorder Society-Unified Parkinson's-Disease Rating Scale (MDS-UPDRS) | MDS-UPDRS是一种PD的临床评估工具,用于评估患者的病情。这个评分量表的数据可以用于研究不同特征与疾病严重程度之间的关系 | https://www.movementdisorders.org/MDS/About/Movement-Disorder-Society.htm |
Open Parkinson's Disease Dataset (OPDD) | OPDD是一个由美国康奈尔大学的研究人员收集和分享的数据集。其包含来自60例PD患者和60名健康人的运动传感器数据、运动特征、身体特征和语音特征等信息 | http://opdd.net/ |
The Parkinson's Telemonitoring Study (PDMonitor) | 该数据集来自于一项基于移动传感器的远程监测研究,收集了PD患者的传感器数据、医学评估和患者自述等信息。该数据集提供了实时、连续的运动特征和临床评估数据 | 具体链接和可用性需要通过康奈尔大学的相关研究团队进行申请 |
文献 | 静/动态 | 方法 | 数据及来源 | ACC (%) | AUC (%) | |
---|---|---|---|---|---|---|
文献[ | 静态 | Transfer Learning (AlexNet) | PMI中的MRI | 88.90 | - | |
文献[ | 静态 | Lenet 和Alexnet | PPMI中的FP-CIT SPECT | 94.10 | 98.40 | |
文献[ | 静态 | Transfer Learning (Inception V3) | PPMI中的SPECT | - | 87.00 | |
文献[ | 静态 | SVM和KNN的集成分类 | PPMI中的SPECT和多种异质生物标志物(CSF,Plasma,RNA和Serum) | 96.00 | - | |
文献[ | 静态 | RF,XGBT和CatBoost的集成分类 | UCI库中的声学特征 | 86.25 | - | |
文献[ | 静态 | KNN,MLP,OPF和SVM | 文献[98]中的发音与语言数据 | 94.55 | 87.00 | |
文献[ | 静态 | GBT,XGBT,Bagging和XRT | UCI库中的声学特征 | 82.35 | - | |
文献[ | 静态 | DT,LR和KNN的集成分类 | UCI库中的声学特征 | 84.59 | - | |
文献[ | 静态 | 文献[88]中提出的一种新颖的深度学习方法 | PPMI中的REM、CSF、嗅觉丧失和SPECT 数据 | 96.45 | - | |
文献[ | 静态 | NB,SVM,Boosting和RF | PPMI中的睡眠行为障碍、CSF、嗅觉丧失和DAT数据 | 96.40 | 98.88 | |
文献[ | 静态 | DNN | UCI库中的声学特征 | 81.67 | - | |
文献[ | 静态 | 文献[101]中提出的一种新颖的深度学习方法(CROWD) | UCI库中的声学特征 | 96.00 | - | |
文献[ | 静态 | CNN | PMI中的MRI,SPECT和生物标志物(CSF) | 93.33 | - | |
文献[ | 动态 | BN | PPMI中的临床、分子和基因数据 | - | - | |
文献[ | 动态 | RF | PPMI中的受试者人口统计学、疾病特征、CSF和DAT数据 | - | - | |
文献[ | 动态 | DBN,SVR和SOM | 基于真实世界PD数据的Total-UPDRS和Motor-UPDRS | - | - | |
文献[ | 动态 | CERNNE | PPMI和ADNI中的SNP和fMRI | 88.60 | - | |
文献[ | 动态 | SVM | PPMI中的临床评分(睡眠、嗅觉)、MRI和DTI | 92.08 | 94.44 | |
文献[ | 动态 | CNN | 英国脑库中的MRI | 96.80 | 99.50 | |
文献[ | 动态 | CNN | PPMI中的DAT,SPECT和非成像临床指标(UPDRS_III评分) | 83.00 | 90.00 | |
文献[ | 动态 | KNN,DT,RF,NB,SVM,K-Means和GMM | PhysioNet网站上的步态周期vGRFs | 90.00 | - | |
文献[ | 动态 | KNN,DT,RF,SVM和GMM | PhysioNet网站上的步态周期CDTW | 97.00 | - | |
文献[ | 动态 | 多源集成学习与CNN | mPower数据集文献[112]中的敲击、行走、声音和记忆数据 | 82.00 | - |
表2 基于机器学习在PD某一时刻诊断和进展预测中的相关工作
Table 2 Based on the relevant work of ML in the diagnosis at a certain time and the prediction of PD disease progression
文献 | 静/动态 | 方法 | 数据及来源 | ACC (%) | AUC (%) | |
---|---|---|---|---|---|---|
文献[ | 静态 | Transfer Learning (AlexNet) | PMI中的MRI | 88.90 | - | |
文献[ | 静态 | Lenet 和Alexnet | PPMI中的FP-CIT SPECT | 94.10 | 98.40 | |
文献[ | 静态 | Transfer Learning (Inception V3) | PPMI中的SPECT | - | 87.00 | |
文献[ | 静态 | SVM和KNN的集成分类 | PPMI中的SPECT和多种异质生物标志物(CSF,Plasma,RNA和Serum) | 96.00 | - | |
文献[ | 静态 | RF,XGBT和CatBoost的集成分类 | UCI库中的声学特征 | 86.25 | - | |
文献[ | 静态 | KNN,MLP,OPF和SVM | 文献[98]中的发音与语言数据 | 94.55 | 87.00 | |
文献[ | 静态 | GBT,XGBT,Bagging和XRT | UCI库中的声学特征 | 82.35 | - | |
文献[ | 静态 | DT,LR和KNN的集成分类 | UCI库中的声学特征 | 84.59 | - | |
文献[ | 静态 | 文献[88]中提出的一种新颖的深度学习方法 | PPMI中的REM、CSF、嗅觉丧失和SPECT 数据 | 96.45 | - | |
文献[ | 静态 | NB,SVM,Boosting和RF | PPMI中的睡眠行为障碍、CSF、嗅觉丧失和DAT数据 | 96.40 | 98.88 | |
文献[ | 静态 | DNN | UCI库中的声学特征 | 81.67 | - | |
文献[ | 静态 | 文献[101]中提出的一种新颖的深度学习方法(CROWD) | UCI库中的声学特征 | 96.00 | - | |
文献[ | 静态 | CNN | PMI中的MRI,SPECT和生物标志物(CSF) | 93.33 | - | |
文献[ | 动态 | BN | PPMI中的临床、分子和基因数据 | - | - | |
文献[ | 动态 | RF | PPMI中的受试者人口统计学、疾病特征、CSF和DAT数据 | - | - | |
文献[ | 动态 | DBN,SVR和SOM | 基于真实世界PD数据的Total-UPDRS和Motor-UPDRS | - | - | |
文献[ | 动态 | CERNNE | PPMI和ADNI中的SNP和fMRI | 88.60 | - | |
文献[ | 动态 | SVM | PPMI中的临床评分(睡眠、嗅觉)、MRI和DTI | 92.08 | 94.44 | |
文献[ | 动态 | CNN | 英国脑库中的MRI | 96.80 | 99.50 | |
文献[ | 动态 | CNN | PPMI中的DAT,SPECT和非成像临床指标(UPDRS_III评分) | 83.00 | 90.00 | |
文献[ | 动态 | KNN,DT,RF,NB,SVM,K-Means和GMM | PhysioNet网站上的步态周期vGRFs | 90.00 | - | |
文献[ | 动态 | KNN,DT,RF,SVM和GMM | PhysioNet网站上的步态周期CDTW | 97.00 | - | |
文献[ | 动态 | 多源集成学习与CNN | mPower数据集文献[112]中的敲击、行走、声音和记忆数据 | 82.00 | - |
[1] |
LEWITT P A. Levodopa therapy for Parkinson's disease: pharmacokinetics and pharmacodynamics[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2015, 30(1): 64-72.
DOI URL |
[2] |
DE PABLO-FERNÁNDEZ E, LEES A J, HOLTON J L, et al. Prognosis and neuropathologic correlation of clinical subtypes of parkinson disease[J]. JAMA Neurology, 2019, 76(4): 470-479.
DOI URL |
[3] |
PAPAGNO C, TROJANO L. Cognitive and behavioral disorders in Parkinson's disease: an update. I: cognitive impairments[J]. Neurological Sciences, 2018, 39(2): 215-223.
DOI PMID |
[4] |
LEROY E, ANASTASOPOULOS D, KONITSIOTIS S, et al. Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease[J]. Human Genetics, 1998, 103(4): 424-427.
PMID |
[5] |
PRUSINER S B. Neurodegenerative diseases and prions[J]. New England Journal of Medicine, 2001, 344(20): 1516-1526.
DOI URL |
[6] | 徐守江. 多模态信息融合的帕金森病机器学习分类预测模型研究[D]. 杭州: 杭州师范大学: 医学部, 2021. |
XU S J. Research on class prediction models of Parkinson's disease through multimodal information fusion and machine learning[D]. Hangzhou: Hangzhou Normal University: Department of Medical Science, 2021 (in Chinese). | |
[7] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2016: 770-778. |
[8] | 宗辉, 张泽宇, 杨金璇, 等. 基于人工智能的中文临床试验筛选标准文本分类研究[J]. 生物医学工程学杂志, 2021, 38(1): 105. |
ZONG H, ZHANG Z Y, YANG J X, et al. Artificial intelligence based Chinese clinical trials eligibility criteria classification[J]. Journal of Biomedical Engineering, 2021, 38(1): 105 (in Chinese). | |
[9] | 郭清. 中国健康服务业发展报告[M]. 北京: 人民卫生出版社, 2014: 3-174. |
GUO Q. Development Report of China Health Service Industry[M]. Beijing: Peoples Medical Publishing House, 2014: 3-174 (in Chinese). | |
[10] | 武留信. 中国健康产业论坛发展报告[J]. 中华健康管理学杂志, 2008, 2(5): 3. |
WU L X. Development Report of China Health Industry Forum[J]. Chinese Journal of Health Management, 2008, 2(5): 3 (in Chinese). | |
[11] |
MAHMUD M, KAISER M S, MCGINNITY T M, et al. Deep learning in mining biological data[J]. Cognitive Computation, 2021, 13(1): 1-33.
DOI PMID |
[12] |
MAHMUD M, KAISER M S, HUSSAIN A, et al. Applications of deep learning and reinforcement learning to biological data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2063-2079.
DOI PMID |
[13] |
NOOR M B T, ZENIA N Z, KAISER M S, et al. Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer's disease, Parkinson's disease and schizophrenia[J]. Brain Informatics, 2020, 7(1): 1-21.
DOI |
[14] | BIND S, TIWARI A, SAHANI A. A survey of machine learning based approaches for Parkinson disease prediction[J]. International Journal of Computer Science and Information Technologies, 2015, 6(2): 1648-1655. |
[15] |
RAMDHANI R A, KHOJANDI A, SHYLO O, et al. Optimizing clinical assessments in Parkinson's disease through the use of wearable sensors and data driven modeling[J]. Frontiers in Computational Neuroscience, 2018, 12: 72.
DOI PMID |
[16] |
PEREIRA C R, PEREIRA D R, WEBER S A T, et al. A survey on computer-assisted Parkinson's disease diagnosis[J]. Artificial Intelligence in Medicine, 2019, 95: 48-63.
DOI PMID |
[17] |
GOYAL J, KHANDNOR P, ASERI T C. Classification, prediction, and monitoring of Parkinson's disease using computer assisted technologies: a comparative analysis[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103955.
DOI URL |
[18] | 崔海伦, 张一帆, 管晓军, 等. 帕金森病及相关运动障碍的神经影像学诊断专家共识[J]. 诊断学理论与实践, 2018, 17(4): 403-408. |
CUI H L, ZHANG Y F, GUAN X J, et al. Expert consensus on neuroimaging diagnosis of Parkinson's disease and related movement disorders[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(4): 403-408 (in Chinese). | |
[19] |
LI X F, XING Y, MARTIN-BASTIDA A, et al. Patterns of grey matter loss associated with motor subscores in early Parkinson's disease[J]. NeuroImage: Clinical, 2018, 17: 498-504.
DOI URL |
[20] |
DE SCHIPPER L J, VAN DER GROND J, MARINUS J, et al. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease[J]. NeuroImage: Clinical, 2017, 15: 587-593.
DOI URL |
[21] |
OOSTERWIJK C S, VRIEND C, BERENDSE H W, et al. Anxiety in Parkinson's disease is associated with reduced structural covariance of the striatum[J]. Journal of Affective Disorders, 2018, 240: 113-120.
DOI PMID |
[22] |
AMOROSO N, LA ROCCA M, MONACO A, et al. Complex networks reveal early MRI markers of Parkinson's disease[J]. Medical Image Analysis, 2018, 48: 12-24.
DOI PMID |
[23] |
ROJAS A, GÓRRIZ J M, RAMÍREZ J, et al. Application of empirical mode decomposition (EMD) on DaTSCAN SPECT images to explore Parkinson disease[J]. Expert Systems with Applications, 2013, 40(7): 2756-2766.
DOI URL |
[24] |
SIVARANJINI S, SUJATHA C M. Deep learning based diagnosis of Parkinson's disease using convolutional neural network[J]. Multimedia Tools and Applications, 2020, 79(21-22): 15467-15479.
DOI |
[25] |
ABÓS A, BAGGIO H C, SEGURA B, et al. Discriminating cognitive status in Parkinson's disease through functional connectomics and machine learning[J]. Scientific Reports, 2017, 7(1): 45347.
DOI URL |
[26] |
OLIVEIRA F P M, FARIA D B, COSTA D C, et al. Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson's disease based on [123I] FP-CIT SPECT images[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45(6): 1052-1062.
DOI URL |
[27] |
MARTINEZ-MURCIA F J, GÓRRIZ J M, RAMÍREZ J, et al. Convolutional neural networks for neuroimaging in Parkinson's disease: is preprocessing needed?[J]. International Journal of Neural Systems, 2018, 28(10): 1850035.
DOI URL |
[28] |
KIM D H, WIT H, THURSTON M. Artificial intelligence in the diagnosis of Parkinson's disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning[J]. Nuclear Medicine Communications, 2018, 39(10): 887-893.
DOI PMID |
[29] |
CASTILLO-BARNES D, RAMÍREZ J, SEGOVIA F, et al. Robust ensemble classification methodology for I123-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson's disease[J]. Frontiers in Neuroinformatics, 2018, 12: 53.
DOI URL |
[30] | 卢志豪, 陈仰昆, 肖卫民. 帕金森病轻度认知障碍患者脑结构影像的研究进展[J]. 医学综述, 2020, 26(13): 2619-2623. |
LU Z H, CHEN Y K, XIAO W M. Research progress of mild cognitive impairment and brain structural imaging in patients with Parkinson's disease[J]. Medical Recapitulate, 2020, 26(13): 2619-2623 (in Chinese). | |
[31] |
WANG W Y, MEI M J, GAO Y Y, et al. Changes of brain structural network connection in Parkinson's disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging[J]. Journal of Neurology, 2020, 267(4): 933-943.
DOI PMID |
[32] | PYATIGORSKAYA N, MAGNIN B, MONGIN M, et al. Comparative study of MRI biomarkers in the substantia nigra to discriminate idiopathic parkinson disease[J]. AJNR American Journal of Neuroradiology, 2018, 39(8): 1460-1467. |
[33] |
GU Q Q, ZHANG H, XUAN M, et al. Automatic classification on multi-modal MRI data for diagnosis of the postural instability and gait difficulty subtype of Parkinson's disease[J]. Journal of Parkinson's Disease, 2016, 6(3): 545-556.
DOI URL |
[34] |
BOWMAN F D, DRAKE D F, HUDDLESTON D E. Multimodal imaging signatures of Parkinson's disease[J]. Frontiers in Neuroscience, 2016, 10: 131.
DOI PMID |
[35] | AL-SAREM M, SAEED F, BOULILA W, et al. Feature selection and classification using CatBoost method for improving the performance of predicting Parkinson's disease[M]// Advances on Smart and Soft Computing. Singapore: Springer, 2021: 189-199. |
[36] | WROGE T J, ÖZKANCA Y, DEMIROGLU C, et al. Parkinson's disease diagnosis using machine learning and voice[C]// 2018 IEEE Signal Processing in Medicine and Biology Symposium. New York: IEEE Press, 2019: 1-7. |
[37] |
ROVINI E, MAREMMANI C, MOSCHETTI A, et al. Comparative motor pre-clinical assessment in Parkinson's disease using supervised machine learning approaches[J]. Annals of Biomedical Engineering, 2018, 46(12): 2057-2068.
DOI PMID |
[38] |
ALMEIDA J S, REBOUÇAS FILHO P P, CARNEIRO T, et al. Detecting Parkinson's disease with sustained phonation and speech signals using machine learning techniques[J]. Pattern Recognition Letters, 2019, 125: 55-62.
DOI URL |
[39] |
PARISI L, RAVICHANDRAN N, MANAOG M L. Feature-driven machine learning to improve early diagnosis of Parkinson's disease[J]. Expert Systems with Applications, 2018, 110: 182-190.
DOI URL |
[40] |
KOTSAVASILOGLOU C, KOSTIKIS N, HRISTU- VARSAKELIS D, et al. Machine learning-based classification of simple drawing movements in Parkinson's disease[J]. Biomedical Signal Processing and Control, 2017, 31: 174-180.
DOI URL |
[41] | NAHAR N, ARA F, NELOY M A I, et al. Feature selection based machine learning to improve prediction of parkinson disease[C]// International Conference on Brain Informatics. Cham: Springer, 2021: 496-508. |
[42] |
KURSA M B, JANKOWSKI A, RUDNICKI W R. Boruta - A system for feature selection[J]. Fundamenta Informaticae, 2010, 101(4): 271-285.
DOI URL |
[43] |
RICHHARIYA B, TANVEER M, RASHID A H. Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE)[J]. Biomedical Signal Processing and Control, 2020, 59: 101903.
DOI URL |
[44] | KURSA M B, RUDNICKI W R. The all relevant feature selection using random forest[EB/OL]. [2022-12-08]. https://arxiv.org/abs/1106.5112.pdf. |
[45] |
NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21.
DOI PMID |
[46] | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. |
[47] | BÜHLMANN P. Bagging, boosting and ensemble methods[M]// Handbook of Computational Statistics. Heidelberg: Springer, 2012: 985-1022. |
[48] |
GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42.
DOI URL |
[49] |
PATRA A K, RAY R, ABDULLAH A A, et al. Prediction of Parkinson's disease using ensemble machine learning classification from acoustic analysis[J]. Journal of Physics: Conference Series, 2019, 1372(1): 012041.
DOI |
[50] |
VU T C, NUTT J G, HOLFORD N H G. Progression of motor and nonmotor features of Parkinson's disease and their response to treatment[J]. British Journal of Clinical Pharmacology, 2012, 74(2): 267-283.
DOI URL |
[51] | ARIAS-VERGARA T, VASQUEZ-CORREA J C, OROZCO-ARROYAVE J R, et al. Parkinson's disease progression assessment from speech using GMM-UBM[C]// Interspeech 2016. Baixas: ISCA, 2016: 1933-1937. |
[52] | SCHULLER B, STEIDL S, BATLINER A, et al. The INTERSPEECH 2015 computational paralinguistics challenge: nativeness, Parkinson's & eating condition[C]// Interspeech 2015. Baixas: ISCA, 2015: 478-482. |
[53] | TSANAS A, LITTLE M, MCSHARRY P, et al. Accurate telemonitoring of Parkinson's disease progression by non-invasive speech tests[J]. IEEE Transactions on Bio-medical Enginwwring, 2010, 57(4): 994-893. |
[54] | SKODDA S, GRÖNHEIT W, MANCINELLI N, et al. Progression of voice and speech impairment in the course of Parkinson's disease: a longitudinal study[J]. Parkinson's Disease, 2013, 2013: 389195. |
[55] | ASGARI M, SHAFRAN I. Extracting cues from speech for predicting severity of Parkinson's disease[C]// 2010 IEEE International Workshop on Machine Learning for Signal Processing. New York: IEEE Press, 2010: 462-467. |
[56] | KIM H M, NAZOR C, ZABETIAN C P, et al. Prediction of cognitive progression in Parkinson's disease using three cognitive screening measures[J]. Clinical Parkinsonism & Related Disorders, 2019, 1: 91-97. |
[57] |
HU M T M, SZEWCZYK-KRÓLIKOWSKI K, TOMLINSON P, et al. Predictors of cognitive impairment in an early stage Parkinson's disease cohort[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2014, 29(3): 351-359.
DOI URL |
[58] |
PIGOTT K, RICK J, XIE S X, et al. Longitudinal study of normal cognition in Parkinson disease[J]. Neurology, 2015, 85(15): 1276-1282.
DOI PMID |
[59] |
MARRAS C, ARMSTRONG M J, MEANEY C A, et al. Measuring mild cognitive impairment in patients with Parkinson's disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2013, 28(5): 626-633.
DOI URL |
[60] |
HOOPS S, NAZEM S, SIDEROWF A D, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease[J]. Neurology, 2009, 73(21): 1738-1745.
DOI PMID |
[61] |
DALRYMPLE-ALFORD J C, MACASKILL M R, NAKAS C T, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease[J]. Neurology, 2010, 75(19): 1717-1725.
DOI URL |
[62] |
MILLER D B, O'CALLAGHAN J P. Biomarkers of Parkinson's disease: present and future[J]. Metabolism, 2015, 64(3): S40-S46.
DOI URL |
[63] |
LATOURELLE J C, BESTE M T, HADZI T C, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation[J]. The Lancet Neurology, 2017, 16(11): 908-916.
DOI URL |
[64] |
SIMUNI T, LONG J D, CASPELL-GARCIA C, et al. Predictors of time to initiation of symptomatic therapy in early Parkinson's disease[J]. Annals of Clinical and Translational Neurology, 2016, 3(7): 482-494.
DOI PMID |
[65] |
AHMADI RASTEGAR D, HO N, HALLIDAY G M, et al. Parkinson's progression prediction using machine learning and serum cytokines[J]. NPJ Parkinson's Disease, 2019, 5(1): 14.
DOI |
[66] |
HOLFORD N H G, CHAN P L S, NUTT J G, et al. Disease progression and pharmacodynamics in parkinson disease - evidence for functional protection with levodopa and other treatments[J]. Journal of Pharmacokinetics and Pharmacodynamics, 2006, 33(3): 281-311.
DOI PMID |
[67] |
CHAN P L S, NUTT J G, HOLFORD N H G. Levodopa slows progression of Parkinson's disease. external validation by clinical trial simulation[J]. Pharmaceutical Research, 2007, 24(4): 791-802.
DOI URL |
[68] | RAVAL V, NGUYEN K P, GERALD A, et al. Prediction of individual progression rate in Parkinson's disease using clinical measures and biomechanical measures of gait and postural stability[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2020: 1319-1323. |
[69] |
NILASHI M, AHMADI H, SHEIKHTAHERI A, et al. Remote tracking of Parkinson's disease progression using ensembles of deep belief network and self-organizing map[J]. Expert Systems with Applications, 2020, 159: 113562.
DOI URL |
[70] | ZAFARANI R, JASHKI M A, BAGHI H, et al. A novel approach for social behavior analysis of the blogosphere[C]// Conference of the Canadian Society for Computational Studies of Intelligence. Heidelberg: Springer, 2008: 356-367. |
[71] | SOLEIMANIANGHAREHCHOPOGH F, MOHAMMADI P, HAKIMI P. Application of decision tree algorithm for data mining in healthcare operations: a case study[J]. International Journal of Computer Applications, 2012, 52(6): 21-26. |
[72] | MOHAMMADI P, HATAMLOU A, MASDARI M. A comparative study on remote tracking of parkinsons disease progression using data mining methods[EB/OL]. [2022-12-17]. https://arxiv.org/abs/1312.2140. |
[73] |
FERESHTEHNEJAD S M, ROMENETS S R, ANANG J B M, et al. New clinical subtypes of parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes[J]. JAMA Neurology, 2015, 72(8): 863-873.
DOI URL |
[74] |
FERESHTEHNEJAD S M, ZEIGHAMI Y, DAGHER A, et al. Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression[J]. Brain, 2017, 140(7): 1959-1976.
DOI URL |
[75] | FAGHRI F, HASHEMI S H, LEONARD H, et al. Predicting onset, progression, and clinical subtypes of Parkinson disease using machine learning[EB/OL]. [2023-01-22]. https://xueshu.baidu.com/usercenter/paper/show?paperid=f72bcb1fbb752b5f77a6b4c2acc1b8ab&site=xueshu_se. |
[76] |
MICHAEL L, YOAV B S, MAY MARGARET T, et al. Developing and validating Parkinson's disease subtypes and their motor and cognitive progression[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2018, 89(12): 1279-1287.
DOI URL |
[77] |
MYSZCZYNSKA M A, OJAMIES P N, LACOSTE A M B, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases[J]. Nature Reviews Neurology, 2020, 16(8): 440-456.
DOI PMID |
[78] | SIMUNI T, CASPELL-GARCIA C, COFFEY C, et al. How stable are Parkinson's disease subtypes in de novo patients: analysis of the PPMI cohort?[J]. Parkinsonism & Related Disorders, 2016, 28: 62-67. |
[79] |
ERRO R, PICILLO M, AMBONI M, et al. Comparing postural instability and gait disorder and akinetic-rigid subtyping of Parkinson disease and their stability over time[J]. European Journal of Neurology, 2019, 26(9): 1212-1218.
DOI PMID |
[80] |
SEVERSON K A, CHAHINE L M, SMOLENSKY L A, et al. Discovery of Parkinson's disease states and disease progression modelling: a longitudinal data study using machine learning[J]. The Lancet Digital Health, 2021, 3(9): e555-e564.
DOI URL |
[81] |
SOLANA-LAVALLE G, ROSAS-ROMERO R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson's disease[J]. Computer Methods and Programs in Biomedicine, 2021, 198: 105793.
DOI URL |
[82] |
GOETZ C G, POEWE W, RASCOL O, et al. Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2004, 19(9): 1020-1028.
DOI URL |
[83] | 李静, 陈为安, 张旭, 等. 早期与中晚期帕金森病患者非运动症状的比较研究[J]. 中国全科医学, 2016, 19(34): 4201-4204. |
LI J, CHEN W A, ZHANG X, et al. Comparative study of non-motor symptoms of patients with parkinson disease between early and middle and advanced phases[J]. Chinese General Practice, 2016, 19(34): 4201-4204 (in Chinese). | |
[84] |
BOOTH T C, NATHAN M, WALDMAN A D, et al. The role of functional dopamine-transporter SPECT imaging in parkinsonian syndromes, part 2[J]. AJNR American Journal of Neuroradiology, 2015, 36(2): 236-244.
DOI URL |
[85] |
ADAMS W R. High-accuracy detection of early Parkinson's disease using multiple characteristics of finger movement while typing[J]. PLoS One, 2017, 12(11): e0188226.
DOI URL |
[86] |
SCHRAG A, HORSFALL L, WALTERS K, et al. Prediagnostic presentations of Parkinson's disease in primary care: a case-control study[J]. The Lancet Neurology, 2015, 14(1): 57-64.
DOI URL |
[87] | PAGAN F L. Improving outcomes through early diagnosis of Parkinson's disease[J]. The American Journal of Managed Care, 2012, 18(< W>7 Suppl): S176-S182. |
[88] |
WANG W, LEE J, HARROU F, et al. Early detection of Parkinson's disease using deep learning and machine learning[J]. IEEE Access, 2020, 8: 147635-147646.
DOI URL |
[89] |
MAHLKNECHT P, HOTTER A, HUSSL A, et al. Significance of MRI in diagnosis and differential diagnosis of Parkinson's disease[J]. Neuro-Degenerative Diseases, 2010, 7(5): 300-318.
DOI URL |
[90] |
REICHMANN H. Clinical criteria for the diagnosis of Parkinson's disease[J]. Neuro-Degenerative Diseases, 2010, 7(5): 284-290.
DOI URL |
[91] |
BI X A, HU X, XIE Y M, et al. A novel CERNNE approach for predicting Parkinson's disease-associated genes and brain regions based on multimodal imaging genetics data[J]. Medical Image Analysis, 2021, 67: 101830.
DOI URL |
[92] | LEI H J, HUANG Z W, ELAZAB A, et al. Longitudinal and multi-modal data learning via joint embedding and sparse regression for Parkinson's disease diagnosis[C]// International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2018: 310-318. |
[93] |
LEI H J, HUANG Z W, ZHANG J, et al. Joint detection and clinical score prediction in Parkinson's disease via multi-modal sparse learning[J]. Expert Systems with Applications, 2017, 80: 284-296.
DOI URL |
[94] |
CHOUGAR L, FAOUZI J, PYATIGORSKAYA N, et al. Automated categorization of parkinsonian syndromes using magnetic resonance imaging in a clinical setting[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2021, 36(2): 460-470.
DOI URL |
[95] |
KIRYU S, YASAKA K, AKAI H, et al. Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: a proof of concept study[J]. European Radiology, 2019, 29(12): 6891-6899.
DOI PMID |
[96] |
TSUDA M, ASANO S, KATO Y, et al. Differential diagnosis of multiple system atrophy with predominant Parkinsonism and Parkinson's disease using neural networks[J]. Journal of the Neurological Sciences, 2019, 401: 19-26.
DOI PMID |
[97] |
PRASHANTH R, DUTTA ROY S, MANDAL P K, et al. High-accuracy detection of early Parkinson's disease through multimodal features and machine learning[J]. International Journal of Medical Informatics, 2016, 90: 13-21.
DOI PMID |
[98] |
VAICIUKYNAS E, VERIKAS A, GELZINIS A, et al. Detecting Parkinson's disease from sustained phonation and speech signals[J]. PLoS One, 2017, 12(10): e0185613.
DOI URL |
[99] |
NARANJO L, PÉREZ C J, CAMPOS-ROCA Y, et al. Addressing voice recording replications for Parkinson's disease detection[J]. Expert Systems with Applications, 2016, 46: 286-292.
DOI URL |
[100] |
GROVER S, BHARTIA S, YADAV A, et al. Predicting severity of Parkinson's disease using deep learning[J]. Procedia Computer Science, 2018, 132: 1788-1794.
DOI URL |
[101] | MASUD M, SINGH P, GABA G S, et al. CROWD: crow search and deep learning based feature extractor for classification of Parkinson's disease[J]. ACM Transactions on Internet Technology, 2021, 21(3): 1-18. |
[102] |
PAHUJA G, PRASAD B. Deep learning architectures for Parkinson's disease detection by using multi-modal features[J]. Computers in Biology and Medicine, 2022, 146: 105610.
DOI URL |
[103] |
SHARANYAA S, SAMBATH M, RENJITH P N. Optimized deep learning for the classification of Parkinson's disease based on voice features[J]. Critical Reviews in Biomedical Engineering, 2022, 50(5): 1-28.
DOI PMID |
[104] |
OH S L, HAGIWARA Y, RAGHAVENDRA U, et al. A deep learning approach for Parkinson's disease diagnosis from EEG signals[J]. Neural Computing and Applications, 2020, 32(15): 10927-10933.
DOI |
[105] | BHAN A, KAPOOR S, GULATI M, et al. Early diagnosis of Parkinson's disease in brain MRI using deep learning algorithm[C]// The 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks. New York: IEEE Press, 2021: 1467-1470. |
[106] | TIWARI H, SHRIDHAR S K, PATIL P V. Early prediction of Parkinson disease using machine learning and deep learning approaches[J]. EasyChair Preprint, 2021, 4889: 1-14. |
[107] |
SHAHID A H, SINGH M P. A deep learning approach for prediction of Parkinson's disease progression[J]. Biomedical Engineering Letters, 2020, 10(2): 227-239.
DOI PMID |
[108] |
ADAMS M P, RAHMIM A, TANG J. Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images[J]. Computers in Biology and Medicine, 2021, 132: 104312.
DOI URL |
[109] |
KHOURY N, ATTAL F, AMIRAT Y, et al. Data-driven based approach to aid Parkinson's disease diagnosis[J]. Sensors, 2019, 19(2): 242.
DOI URL |
[110] | KHOURY N, ATTAL F, AMIRAT Y, et al. CDTW-based classification for Parkinson's disease diagnosis[C]// European Symposium on Artificial Neural Networks. Amsterdam: Elsevier. 2018: 621-626. |
[111] |
PRINCE J, ANDREOTTI F, DE VOS M. Multi-source ensemble learning for the remote prediction of Parkinson's disease in the presence of source-wise missing data[J]. IEEE Transactions on Bio-Medical Engineering, 2018, 66(5): 1402-1411.
DOI URL |
[112] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[113] |
PRASHANTH R, DUTTA ROY S, MANDAL P K, et al. High-accuracy classification of Parkinson's disease through shape analysis and surface fitting in 123I-ioflupane SPECT imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(3): 794-802.
DOI URL |
[1] | 边坤, 梁慧. 基于机器学习的图案分类研究进展[J]. 图学学报, 2023, 44(3): 415-426. |
[2] | 胡志明, 李胜, 盖孟. 用户任务预测研究进展与算法分析[J]. 图学学报, 2021, 42(3): 367-375. |
[3] | 刘 昶, 徐超远, 张 鑫, 薛 磊. 液晶字符识别的 CNN 和 SVM 组合分类器[J]. 图学学报, 2021, 42(1): 15-22. |
[4] | 李振波 1,2,3, 杨晋琪 1, 岳 峻 4 . 基于协同回归模型的矩阵分解推荐[J]. 图学学报, 2019, 40(6): 983-990. |
[5] | 李秋萍, 刘 慧, 苏志远. 基于改进的半监督FCM 聚类算法的肺结节分类与识别[J]. 图学学报, 2015, 36(2): 244-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||