欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (3): 482-494.DOI: 10.11996/JG.j.2095-302X.2024030482

• 图像处理与计算机视觉 • 上一篇    下一篇

基于权衡因子和多维空间度量的高鲁棒性图像分割算法

刘以1(), 邱军海2, 张嘉星1, 张小峰1,3,4(), 王桦1,4, 张彩明5   

  1. 1.鲁东大学信息与电气工程学院,山东 烟台 264025
    2.烟台工程职业技术学院,山东 烟台 264006
    3.烟台理工学院信息工程学院,山东 烟台 264003
    4.山东省高等学校青少年行为大数据智能分析文科实验室,山东 烟台 264025
    5.山东大学软件学院,山东 济南 250014
  • 收稿日期:2023-09-06 接受日期:2023-11-13 出版日期:2024-06-30 发布日期:2024-06-11
  • 通讯作者:张小峰(1978-),男,教授,博士。主要研究方向为图形图像处理、计算机视觉等。E-mail:iamzxf@126.com
  • 第一作者:刘以(1998-),男,硕士研究生。主要研究方向为数字图像处理与模式识别。E-mail:yi_domi@163.com
  • 基金资助:
    国家自然科学基金项目(62007017);国家自然科学基金项目(U22A2033);国家自然科学基金项目(61873117);国家自然科学基金项目(62171209);国家自然科学基金项目(62176140);烟台市科技创新发展计划基础研究项目(2023JCYJ044)

A highly robust image segmentation algorithm based on trade-off factors and multidimensional spatial metrics

LIU Yi1(), QIU Junhai2, ZHANG Jiaxing1, ZHANG Xiaofeng1,3,4(), WANG Hua1,4, ZHANG Caiming5   

  1. 1. School of Information and Electrical Engineering, Ludong University, Yantai Shandong 264025, China
    2. Yantai Engineering & Technology College, Yantai Shandong 264006, China
    3. School of Information Engineering, Yantai Institute of Technology, Yantai Shandong 264003, China
    4. Humanities Laboratory of Intelligent Analysis on Big Data of Adolescent Behaviors, Universities of Shandong Province, Yantai Shandong 264025, China
    5. School of Software, Shandong University, Jinan Shandong 250014, China
  • Received:2023-09-06 Accepted:2023-11-13 Published:2024-06-30 Online:2024-06-11
  • First author:LIU Yi (1998-), master student. His main research interests cover digital image processing and pattern recognition. E-mail: yi_domi@163.com
  • Supported by:
    National Natural Science Foundation of China(62007017);National Natural Science Foundation of China(U22A2033);National Natural Science Foundation of China(61873117);National Natural Science Foundation of China(62171209);National Natural Science Foundation of China(62176140);Basic Research Project of Yantai Science and Technology Innovation Development Plan(2023JCYJ044)

摘要:

图像分割是计算机视觉的重要研究方向。聚类算法作为一种无监督的方法,一直是图像分割的有力工具。然而,当图像存在高强度噪声和复杂结构时,聚类算法的分割效果可能不理想。针对这一问题,提出了一种高鲁棒性的图像分割算法,该算法基于权衡因子和多维空间度量。首先,引入了一个权衡因子,通过调节该因子,可以有效地降低噪声对分割结果的影响。其次,结合了低维和高维的空间度量,能够捕捉图像中的线性和非线性特征。并更好地理解图像中的复杂结构和纹理,从而提高分割的准确性和鲁棒性。最后,利用改进的模糊聚类算法实现了图像分割。为了验证该算法的性能,在合成、自然和医学图像上进行了大量的实验,结果显示,该算法在分割性能上明显优于其他算法。

关键词: 图像分割, 聚类, 无监督, 权衡因子, 多维空间度量

Abstract:

Image segmentation is an important research direction in computer vision. Clustering algorithms, serving as an unsupervised method, have always been a powerful tool for image segmentation. However, in scenarios where image possess high-intensity noise and complex structures, the segmentation effect of clustering algorithms might prove unsatisfactory. To address this problem, a highly robust image segmentation algorithm was proposed based on trade-off factors and multi-dimensional space metrics. Firstly, a trade-off factor was introduced to effectively reduce the influence of noise on the segmentation result by adjusting the factor. Secondly, the algorithm integrated both low-dimensional and high-dimensional space metrics, enabling the capture of linear and nonlinear features in the image. In this way, the algorithm facilitated a more comprehensive understanding of the complex structure and texture in the image, thereby enhancing the accuracy and robustness of segmentation. Finally, the algorithm achieved image segmentation through the application of an enhanced fuzzy clustering algorithm. To verify the performance of the algorithm, extensive experiments were conducted on synthetic, natural, and medical images, and the results demonstrated that the proposed method significantly outperformed other algorithms in terms of segmentation.

Key words: image segmentation, clustering, unsupervised, trade-off factor, multidimensional spatial metric

中图分类号: