图学学报 ›› 2024, Vol. 45 ›› Issue (3): 482-494.DOI: 10.11996/JG.j.2095-302X.2024030482
刘以1(), 邱军海2, 张嘉星1, 张小峰1,3,4(
), 王桦1,4, 张彩明5
收稿日期:
2023-09-06
接受日期:
2023-11-13
出版日期:
2024-06-30
发布日期:
2024-06-11
通讯作者:
张小峰(1978-),男,教授,博士。主要研究方向为图形图像处理、计算机视觉等。E-mail:iamzxf@126.com第一作者:
刘以(1998-),男,硕士研究生。主要研究方向为数字图像处理与模式识别。E-mail:yi_domi@163.com
基金资助:
LIU Yi1(), QIU Junhai2, ZHANG Jiaxing1, ZHANG Xiaofeng1,3,4(
), WANG Hua1,4, ZHANG Caiming5
Received:
2023-09-06
Accepted:
2023-11-13
Published:
2024-06-30
Online:
2024-06-11
First author:
LIU Yi (1998-), master student. His main research interests cover digital image processing and pattern recognition. E-mail: yi_domi@163.com
Supported by:
摘要:
图像分割是计算机视觉的重要研究方向。聚类算法作为一种无监督的方法,一直是图像分割的有力工具。然而,当图像存在高强度噪声和复杂结构时,聚类算法的分割效果可能不理想。针对这一问题,提出了一种高鲁棒性的图像分割算法,该算法基于权衡因子和多维空间度量。首先,引入了一个权衡因子,通过调节该因子,可以有效地降低噪声对分割结果的影响。其次,结合了低维和高维的空间度量,能够捕捉图像中的线性和非线性特征。并更好地理解图像中的复杂结构和纹理,从而提高分割的准确性和鲁棒性。最后,利用改进的模糊聚类算法实现了图像分割。为了验证该算法的性能,在合成、自然和医学图像上进行了大量的实验,结果显示,该算法在分割性能上明显优于其他算法。
中图分类号:
刘以, 邱军海, 张嘉星, 张小峰, 王桦, 张彩明. 基于权衡因子和多维空间度量的高鲁棒性图像分割算法[J]. 图学学报, 2024, 45(3): 482-494.
LIU Yi, QIU Junhai, ZHANG Jiaxing, ZHANG Xiaofeng, WANG Hua, ZHANG Caiming. A highly robust image segmentation algorithm based on trade-off factors and multidimensional spatial metrics[J]. Journal of Graphics, 2024, 45(3): 482-494.
算法 | 参数 | 窗口大小 |
---|---|---|
FCM | - | - |
FCMS1 | α=2 | 3×3 |
FCMS2 | α=2 | 3×3 |
ENFCM | α=2 | 3×3 |
FGFCM | λs=3,λg=3 | 3×3 |
FLICM | - | 3×3 |
LMKLFCM | β=3 | 3×3 |
KWFLICM | - | 5×5 |
FRFCM | se=3 | 5×5 |
FCM_SICM | σd=5,σr=2 | - |
Proposed | β=0.7,γ1=0.8 | 5×5 |
表1 各类算法中涉及的相关参数
Table 1 Relevant parameters involved in each type of algorithm
算法 | 参数 | 窗口大小 |
---|---|---|
FCM | - | - |
FCMS1 | α=2 | 3×3 |
FCMS2 | α=2 | 3×3 |
ENFCM | α=2 | 3×3 |
FGFCM | λs=3,λg=3 | 3×3 |
FLICM | - | 3×3 |
LMKLFCM | β=3 | 3×3 |
KWFLICM | - | 5×5 |
FRFCM | se=3 | 5×5 |
FCM_SICM | σd=5,σr=2 | - |
Proposed | β=0.7,γ1=0.8 | 5×5 |
Fig. 4 Segmentation results of the first synthetic image ((a) Original image; (b) Noisy image corrupted by salt & pepper noise of 50% density; (c) FCM; (d) FCMS1; (e) FCMS2; (f) EnFCM; (g) FGFCM; (h) FLICM; (i) LMKLFCM; (j) KWFLICM; (k) FRFCM; (l) FCM_SICM; (m) Ours)
图5 不同强度噪声下的第一幅合成图像的不同评价指标
Fig. 5 Different evaluation indicators under different intensity noise of the first synthetic image ((a) SA; (b) Sen; (c) Jaccard; (d) Mpa; (e) PSNR)
图6 天鹅的分割结果((a)原始图像;(b)被40%高斯噪声破坏的图像;(c) FCM;(d) FCMS1;(e) FCMS2;(f) EnFCM;(g) FGFCM;(h) FLICM;(i) LMKLFCM;(j) KWFLICM;(k) FRFCM;(l) FCM_SICM;(m)本文算法)
Fig. 6 Segmentation results of the swan ((a) Original image; (b) Noisy image corrupted by Gaussian noise of 40% variance; (c) FCM; (d) FCMS1; (e) FCMS2; (f) EnFCM; (g) FGFCM; (h) FLICM; (i) LMKLFCM; (j) KWFLICM; (k) FRFCM; (l) FCM_SICM; (m) Ours)
图7 教堂的分割结果((a)原始图像;(b)被40%椒盐噪声破坏的图像;(c) FCM;(d) FCMS1;(e) FCMS2;(f) EnFCM;(g) FGFCM;(h) FLICM;(i) LMKLFCM;(j) KWFLICM;(k) FRFCM;(l) FCM_SICM;(m)本文算法)
Fig. 7 Segmentation results of the church ((a) Original image; (b) Noisy image corrupted by salt & pepper noise of 40% density; (c) FCM; (d) FCMS1; (e) FCMS2; (f) EnFCM; (g) FGFCM; (h) FLICM; (i) LMKLFCM; (j) KWFLICM; (k) FRFCM; (l) FCM_SICM; (m) Ours)
图8 飞机的分割结果((a)原始图像;(b)被混合噪声破坏的图像;(c) FCM;(d) FCMS1;(e) FCMS2;(f) EnFCM;(g) FGFCM;(h) FLICM;(i) LMKLFCM;(j) KWFLICM;(k) FRFCM;(l) FCM_SICM;(m)本文算法)
Fig. 8 Segmentation results of the airplane ((a) Original image; (b) Noisy image corrupted by mixed noise; (c) FCM; (d) FCMS1; (e) FCMS2; (f) EnFCM; (g) FGFCM; (h) FLICM; (i) LMKLFCM; (j) KWFLICM; (k) FRFCM; (l) FCM_SICM; (m) Ours)
Indicators | Picture | FCM | FCMS1 | FCMS2 | ENFCM | FGFCM | FLICM | LMKLFCM | KWFLICM | FRFCM | FCM_SICM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vpc | 0.622 8 | 0.724 7 | 0.730 0 | 0.817 0 | 0.818 2 | 0.872 0 | 0.775 3 | 0.691 3 | 0.661 6 | 0.791 1 | 0.898 3 | |
0.830 8 | 0.604 9 | 0.732 1 | 0.799 0 | 0.825 2 | 0.517 5 | 0.725 5 | 0.730 6 | 0.756 1 | 0.757 5 | 0.911 2 | ||
0.578 5 | 0.571 7 | 0.606 0 | 0.772 1 | 0.779 2 | 0.501 9 | 0.624 2 | 0.483 0 | 0.632 9 | 0.633 3 | 0.926 6 | ||
Vpe | 0.961 8 | 0.669 4 | 0.655 8 | 0.461 5 | 0.456 4 | 0.357 4 | 0.549 5 | 0.790 3 | 0.865 5 | 0.565 2 | 0.317 6 | |
0.317 6 | 0.979 6 | 0.666 4 | 0.528 2 | 0.463 0 | 1.174 2 | 0.694 7 | 0.717 5 | 0.656 6 | 0.635 1 | 0.258 6 | ||
1.052 8 | 1.047 4 | 0.954 6 | 0.587 2 | 0.556 0 | 1.179 3 | 0.919 6 | 1.249 7 | 0.926 0 | 0.845 2 | 0.252 4 |
表2 自然图像的Vpc和Vpe
Table 2 Vpc and Vpe on natural images
Indicators | Picture | FCM | FCMS1 | FCMS2 | ENFCM | FGFCM | FLICM | LMKLFCM | KWFLICM | FRFCM | FCM_SICM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vpc | 0.622 8 | 0.724 7 | 0.730 0 | 0.817 0 | 0.818 2 | 0.872 0 | 0.775 3 | 0.691 3 | 0.661 6 | 0.791 1 | 0.898 3 | |
0.830 8 | 0.604 9 | 0.732 1 | 0.799 0 | 0.825 2 | 0.517 5 | 0.725 5 | 0.730 6 | 0.756 1 | 0.757 5 | 0.911 2 | ||
0.578 5 | 0.571 7 | 0.606 0 | 0.772 1 | 0.779 2 | 0.501 9 | 0.624 2 | 0.483 0 | 0.632 9 | 0.633 3 | 0.926 6 | ||
Vpe | 0.961 8 | 0.669 4 | 0.655 8 | 0.461 5 | 0.456 4 | 0.357 4 | 0.549 5 | 0.790 3 | 0.865 5 | 0.565 2 | 0.317 6 | |
0.317 6 | 0.979 6 | 0.666 4 | 0.528 2 | 0.463 0 | 1.174 2 | 0.694 7 | 0.717 5 | 0.656 6 | 0.635 1 | 0.258 6 | ||
1.052 8 | 1.047 4 | 0.954 6 | 0.587 2 | 0.556 0 | 1.179 3 | 0.919 6 | 1.249 7 | 0.926 0 | 0.845 2 | 0.252 4 |
图9 大脑的分割结果((a)原始图像;(b)被30%Rician噪声噪声破坏的图像;(c) Ground truth;(d) FCM;(e) FCMS1;(f) FCMS2;(g) EnFCM;(h) FGFCM;(i) FLICM;(j) LMKLFCM;(k) KWFLICM;(l) FRFCM;(m) FCM_SICM;(n)本文算法)
Fig. 9 Segmentation results of the brain ((a) Original image; (b) Noisy image corrupted by Rician noise of 30% density; (c) Ground truth (d) FCM; (e) FCMS1; (f) FCMS2; (g) EnFCM; (h) FGFCM; (i) FLICM; (j) LMKLFCM; (k) KWFLICM; (l) FRFCM; (m) FCM_SICM; (n) Ours)
图10 皮肤病的分割结果((a)原始图像;(b) Ground truth;(c) FCM;(d) FCMS1;(e) FCMS2;(f) EnFCM;(g) FGFCM;(h) FLICM;(i) LMKLFCM;(j) KWFLICM;(k) FRFCM;(l) FCM_SICM;(m)本文算法)
Fig. 10 Segmentation results of the skin ((a) Original image; (b) Ground truth; (c) FCM; (d) FCMS1; (e) FCMS2; (f) EnFCM; (g) FGFCM; (h) FLICM; (i) LMKLFCM; (j) KWFLICM; (k) FRFCM; (l) FCM_SICM; (m) Ours)
Picture | FCM | FCMS1 | FCMS2 | ENFCM | FGFCM | FLICM | LMKLFCM | KWFLICM | FRFCM | FCM_SICM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|
0.561 2 | 0.642 0 | 0.645 1 | 0.695 7 | 0.731 9 | 0.723 5 | 0.652 9 | 0.796 9 | 0.579 2 | 0.773 1 | 0.796 1 | |
0.912 6 | 0.921 3 | 0.921 9 | 0.920 4 | 0.920 2 | 0.912 4 | 0.912 4 | 0.900 4 | 0.922 3 | 0.916 4 | 0.925 1 |
表3 医学图像的SA
Table 3 SA on medical images
Picture | FCM | FCMS1 | FCMS2 | ENFCM | FGFCM | FLICM | LMKLFCM | KWFLICM | FRFCM | FCM_SICM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|
0.561 2 | 0.642 0 | 0.645 1 | 0.695 7 | 0.731 9 | 0.723 5 | 0.652 9 | 0.796 9 | 0.579 2 | 0.773 1 | 0.796 1 | |
0.912 6 | 0.921 3 | 0.921 9 | 0.920 4 | 0.920 2 | 0.912 4 | 0.912 4 | 0.900 4 | 0.922 3 | 0.916 4 | 0.925 1 |
图11 Skyataset部分分割结果((a)被噪声污染的Skyataset_001;(b) Ground truth_001;(c)本文算法;(d)被噪声污染的Skyataset_045;(e) Ground truth_045;(f)本文算法)
Fig. 11 Partial segmentation results of Skyataset ((a) Noise-contaminated Skyataset_001; (b) Ground truth_001; (c) Results of the proposed algorithm; (d) Noise-contaminated Skyataset_045; (e) Ground truth_045; (f) Ours)
Indicators | FCM | FCMS1 | FCMS2 | ENFCM | FGFCM | FLICM | LMKLFCM | KWFLICM | FRFCM | FCM_SICM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|
SA | 0.740 6 | 0.808 6 | 0.812 3 | 0.810 0 | 0.821 5 | 0.833 2 | 0.824 6 | 0.814 1 | 0.811 8 | 0.870 7 | 0.872 0 |
Sen | 0.789 0 | 0.843 8 | 0.848 1 | 0.843 5 | 0.850 6 | 0.856 7 | 0.861 6 | 0.850 4 | 0.849 0 | 0.808 3 | 0.800 4 |
Jaccard | 0.566 6 | 0.670 4 | 0.676 9 | 0.672 1 | 0.689 6 | 0.700 4 | 0.696 1 | 0.696 0 | 0.677 5 | 0.701 8 | 0.703 7 |
Mpa | 0.789 0 | 0.843 8 | 0.848 1 | 0.843 5 | 0.850 6 | 0.856 7 | 0.861 6 | 0.850 4 | 0.849 0 | 0.808 3 | 0.800 4 |
PSNR | 6.149 7 | 8.727 4 | 8.932 0 | 8.785 5 | 9.283 8 | 9.957 0 | 9.529 1 | 10.000 3 | 8.964 9 | 10.452 8 | 10.675 7 |
表4 相关算法在Skyataset数据集的平均结果
Table 4 Average results of the correlation algorithm on the Skyataset dataset
Indicators | FCM | FCMS1 | FCMS2 | ENFCM | FGFCM | FLICM | LMKLFCM | KWFLICM | FRFCM | FCM_SICM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|
SA | 0.740 6 | 0.808 6 | 0.812 3 | 0.810 0 | 0.821 5 | 0.833 2 | 0.824 6 | 0.814 1 | 0.811 8 | 0.870 7 | 0.872 0 |
Sen | 0.789 0 | 0.843 8 | 0.848 1 | 0.843 5 | 0.850 6 | 0.856 7 | 0.861 6 | 0.850 4 | 0.849 0 | 0.808 3 | 0.800 4 |
Jaccard | 0.566 6 | 0.670 4 | 0.676 9 | 0.672 1 | 0.689 6 | 0.700 4 | 0.696 1 | 0.696 0 | 0.677 5 | 0.701 8 | 0.703 7 |
Mpa | 0.789 0 | 0.843 8 | 0.848 1 | 0.843 5 | 0.850 6 | 0.856 7 | 0.861 6 | 0.850 4 | 0.849 0 | 0.808 3 | 0.800 4 |
PSNR | 6.149 7 | 8.727 4 | 8.932 0 | 8.785 5 | 9.283 8 | 9.957 0 | 9.529 1 | 10.000 3 | 8.964 9 | 10.452 8 | 10.675 7 |
[1] | YAO T, KONG X W, FU H Y, et al. Discrete semantic alignment hashing for cross-media retrieval[J]. IEEE Transactions on Cybernetics, 2020, 50(12): 4896-4907. |
[2] |
YAO T, WANG G, YAN L S, et al. Online latent semantic hashing for cross-media retrieval[J]. Pattern Recognition, 2019, 89: 1-11.
DOI |
[3] | ZHANG X F, SUN Y J, LIU H, et al. Improved clustering algorithms for image segmentation based on non-local information and back projection[J]. Information Sciences, 2021, 550: 129-144. |
[4] | 张燕, 高鑫, 刘以, 等. 基于改进像素相关性模型的图像分割算法[J]. 图学学报, 2022, 43(2): 205-213. |
ZHANG Y, GAO X, LIU Y, et al. Image segmentation algorithm based on improved pixel correlation model[J]. Journal of Graphics, 2022, 43(2): 205-213 (in Chinese).
DOI |
|
[5] | ZHANG X F, WANG H, ZHANG Y, et al. Improved fuzzy clustering for image segmentation based on a low-rank prior[J]. Computational Visual Media, 2021, 7(4): 513-528. |
[6] | LIU H, XU J, WU Y, et al. Learning deconvolutional deep neural network for high resolution medical image reconstruction[J]. Information Sciences, 2018, 468: 142-154. |
[7] | HUANG B J, WANG Z Y, WANG G C, et al. PLFace: progressive learning for face recognition with mask bias[J]. Pattern Recognition, 2023, 135: 109142. |
[8] | 蒋弘毅, 王永娟, 康锦煜. 目标检测模型及其优化方法综述[J]. 自动化学报, 2021, 47(6): 1232-1255. |
JIANG H Y, WANG Y J, KANG J Y. A survey of object detection models and its optimization methods[J]. Acta Automatica Sinica, 2021, 47(6): 1232-1255 (in Chinese). | |
[9] | HAN J F, LUO P, WANG X G. Deep self-learning from noisy labels[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 5137-5146. |
[10] | SOLORIO-FERNÁNDEZ S, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F. A review of unsupervised feature selection methods[J]. Artificial Intelligence Review, 2020, 53(2): 907-948. |
[11] | SINAGA K P, YANG M S. Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020, 8: 80716-80727. |
[12] | YU X, LIU H, LIN Y X, et al. Auto-weighted sample-level fusion with anchors for incomplete multi-view clustering[J]. Pattern Recognition, 2022, 130: 108772. |
[13] | ZHANG X F, WANG H, ZHANG Y, et al. Improved fuzzy clustering for image segmentation based on a low-rank prior[J]. Computational Visual Media, 2021, 7(4): 513-528. |
[14] | SHI P F, GUO L, CUI H R, et al. Geometric consistent fuzzy cluster ensemble with membership reconstruction for image segmentation[J]. Digital Signal Processing, 2023, 134: 103901. |
[15] | GUO L, SHI P F, CHEN L, et al. Pixel and region level information fusion in membership regularized fuzzy clustering for image segmentation[J]. Information Fusion, 2023, 92: 479-497. |
[16] | BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3): 191-203. |
[17] |
AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
PMID |
[18] | KRINIDIS S, CHATZIS V. A robust fuzzy local information C-Means clustering algorithm[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2010, 19(5): 1328-1337. |
[19] | CAI W L, CHEN S C, ZHANG D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3): 825-838. |
[20] | WANG Q S, WANG X P, FANG C, et al. Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation[J]. Applied Soft Computing, 2020, 92: 106318. |
[21] | GONG M G, LIANG Y, SHI J, et al. Fuzzy C-means clustering with local information and kernel metric for image segmentation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2013, 22(2): 573-584. |
[22] | SZILAGYI L, BENYO Z, SZILAGYI S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]// The 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE Press, 2004: 724-726. |
[23] | GHARIEB R R, GENDY G. Fuzzy C-means with a local membership kl distance for medical image segmentation[C]// 2014 Cairo International Biomedical Engineering Conference. New York: IEEE Press, 2015: 47-50. |
[24] | LEI T, JIA X H, ZHANG Y N, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027-3041. |
[25] | WU C M, YANG X Q. Robust credibilistic fuzzy local information clustering with spatial information constraints[J]. Digital Signal Processing, 2020, 97: 102615. |
[26] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2023-01-12]. https://arxiv.org/abs/1511.07122.pdf. |
[27] | WU C M, YANG X Q. Robust credibilistic fuzzy local information clustering with spatial information constraints[J]. Digital Signal Processing, 2020, 97: 102615. |
[28] | CHENG M M, MITRA N J, HUANG X L, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582. |
[29] |
SAHA A, DAS S. Stronger convergence results for the center-based fuzzy clustering with convex divergence measure[J]. IEEE Transactions on Cybernetics, 2019, 49(12): 4229-4242.
DOI PMID |
[30] | HIRIART-URRUTY J B, STRODIOT J J, NGUYEN V H. Generalized Hessian matrix and second-order optimality conditions for problems with C1, 1 data[J]. Applied Mathematics and Optimization, 1984, 11(1): 43-56. |
[31] | EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. |
[32] | MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// The 8th IEEE International Conference on Computer Vision. New York: IEEE Press, 2002: 416-423. |
[33] | TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5: 180161. |
[34] | CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. [2023-01-13]. https://arxiv.org/abs/1902.03368.pdf. |
[35] | SALAZA C S, MOYA-SANCHEZ E U, RAMOAS- ARREGUIN J M, et al. Fast single image defogging with robust sky detection[J]. IEEE Access, 2020, 8: 149176-149189. |
[1] | 石敏, 禚心如, 孙碧莲, 韩国庆, 朱登明. 适用于不同款式的无监督服装动画预测[J]. 图学学报, 2024, 45(3): 539-547. |
[2] | 宋焕生, 文雅, 孙士杰, 宋翔宇, 张朝阳, 李旭. 基于改进教师学生网络的隧道火灾检测[J]. 图学学报, 2023, 44(5): 978-987. |
[3] | 肖天行, 吴静静. 基于残差和特征分块注意力的激光打码字符分割[J]. 图学学报, 2023, 44(3): 482-491. |
[4] | 朱天晓, 闫丰亭, 史志才. 特征保持的区域分级网格简化算法[J]. 图学学报, 2023, 44(3): 570-578. |
[5] | 冯尊登, 王洪元, 林龙, 孙博言, 陈海琴. 基于多分支注意网络与相似度学习策略的无监督行人重识别[J]. 图学学报, 2023, 44(2): 280-290. |
[6] | 闫善武, 肖洪兵, 王瑜, 孙梅. 融合行人时空信息的视频异常检测[J]. 图学学报, 2023, 44(1): 95-103. |
[7] | 范震, 刘晓静, 李小波, 崔亚超. 一种对光照和遮挡鲁棒的单应性估计方法[J]. 图学学报, 2023, 44(1): 166-176. |
[8] | 王浩, 郑德华, 刘存泰, 程宇翔, 胡创. 基于 SHOT 特征描述子的自动提取球形标靶方法研究 [J]. 图学学报, 2022, 43(5): 849-857. |
[9] | 彭国琴, 张浩, 徐丹. 基于域自适应的云南重彩画无监督情感识别[J]. 图学学报, 2022, 43(4): 641-650. |
[10] | 李忠伟, 徐斌, 李永, 宫凯旋, 刘格格. 基于非结构化三角网格的海洋流场可视化[J]. 图学学报, 2022, 43(3): 486-495. |
[11] | 张燕, 高鑫, 刘以, 张小峰, 张彩明. 基于改进像素相关性模型的图像分割算法[J]. 图学学报, 2022, 43(2): 205-213. |
[12] | 李翠云, 白静, 郑凉. 融合边缘增强注意力机制和 U-Net 网络的医学图像分割[J]. 图学学报, 2022, 43(2): 273-278. |
[13] | 李妮妮, 王夏黎, 付阳阳, 郑凤仙, 何丹丹, 袁绍欣. 一种优化 YOLO 模型的交通警察目标检测方法[J]. 图学学报, 2022, 43(2): 296-305. |
[14] | 陈宝玉, 张怡, 于冰冰, 刘秀平. 两阶段可调节感知蒸馏网络的虚拟试衣方法[J]. 图学学报, 2022, 43(2): 316-323. |
[15] | 蔡敏敏, 黄继风, 林 晓, 周小平. 基于人体姿态估计与聚类的特定运动帧获取方法[J]. 图学学报, 2022, 43(1): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||