图学学报 ›› 2023, Vol. 44 ›› Issue (5): 978-987.DOI: 10.11996/JG.j.2095-302X.2023050978
宋焕生1(), 文雅1, 孙士杰1(
), 宋翔宇2, 张朝阳1, 李旭1
收稿日期:
2023-02-08
接受日期:
2023-05-23
出版日期:
2023-10-31
发布日期:
2023-10-31
通讯作者:
孙士杰(1989-),男,副教授,博士。主要研究方向为多目标检测跟踪、位姿估计。E-mail:shijieSun@chd.edu.cn
作者简介:
宋焕生(1964-),男,教授,博士。主要研究方向为图像/交通视频处理、智能交通。E-mail:hshsong@chd.edu.cn
基金资助:
SONG Huan-sheng1(), WEN Ya1, SUN Shi-jie1(
), SONG Xiang-yu2, ZHANG Chao-yang1, LI Xu1
Received:
2023-02-08
Accepted:
2023-05-23
Online:
2023-10-31
Published:
2023-10-31
Contact:
SUN Shi-jie (1989-), associate professor, Ph.D. His main research interests cover multi object detection and tracking, pose estimation. E-mail:About author:
SONG Huan-sheng (1964-), professor, Ph.D. His main research interests cover image/traffic video processing, intelligent trans-portation. E-mail:hshsong@chd.edu.cn
Supported by:
摘要:
隧道空间狭小,封闭性高,当发生火灾时,火势会迅速蔓延,导致救援难度增大,严重危害人们的生命财产安全。现有隧道火灾检测方法精度低且数据集匮乏,针对上述问题,提出一种基于改进教师学生网络的隧道火灾检测方法。首先,通过无监督学习对没有火灾的样本进行训练从而检测火灾,可以弥补隧道火灾数据集匮乏的问题,同时采用相同结构的学生网络和教师网络组成整体网络结构,在用于知识蒸馏的残差块中加入注意力机制以减少重要信息损失,过滤无关信息,其次用Mish激活函数代替Relu激活函数以提高网络性能,最后引入SPD-Conv模块代替跨步卷积层和池化层以提高较小火灾区域的检测精度。实验结果表明:改进的教师学生网络在自制隧道火灾数据集的像素级AUC-ROC和图像级AUC-ROC分别达到0.93和0.82,与现有隧道火灾检测算法相比,该模型检测精度均高于其他模型,验证了该模型的有效性。
中图分类号:
宋焕生, 文雅, 孙士杰, 宋翔宇, 张朝阳, 李旭. 基于改进教师学生网络的隧道火灾检测[J]. 图学学报, 2023, 44(5): 978-987.
SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network[J]. Journal of Graphics, 2023, 44(5): 978-987.
分类 | 设备 | 信息 |
---|---|---|
硬件 | 处理器 | Intel®Core-i9 10900K CPU @3.70 GHz |
内存 | 64 G | |
GPU | NVIDIA GeForce RTX 2060SUPER | |
显存 | 8 G | |
软件 | 系统 | Ubuntu 20.04 |
Cuda版本 | CUDA 10.0 | |
平台 | Pytorch 1.8.1 |
表1 实验环境
Table 1 Experimental environment
分类 | 设备 | 信息 |
---|---|---|
硬件 | 处理器 | Intel®Core-i9 10900K CPU @3.70 GHz |
内存 | 64 G | |
GPU | NVIDIA GeForce RTX 2060SUPER | |
显存 | 8 G | |
软件 | 系统 | Ubuntu 20.04 |
Cuda版本 | CUDA 10.0 | |
平台 | Pytorch 1.8.1 |
图7 测试集示例图((a)~(d)隧道火灾场景;(e)高速公路火灾场景;(f)自制非车辆火灾场景;(g)高速公路车辆目标非火灾场景;(h) CoCo数据集中车辆目标非火灾场景)
Fig. 7 Example diagrams of test dataset ((a)~(d) Tunnel fire scenarios; (e) Highway fire scenarios; (f) Self-made non-vehicle fire scenarios; (g) Highway vehicle target fire-free scenarios; (h) Vehicle target fire-free scenarios in the CoCo dataset)
算法模型 | ARI | ARP | S | FPS |
---|---|---|---|---|
STPM | 0.65 | 0.83 | 104.8 | 100 |
STPM+CA | 0.72 | 0.84 | 110.4 | 95.6 |
STPM+ECA | 0.75 | 0.86 | 108.0 | 88.4 |
STPM+ CBAM | 0.78 | 0.87 | 115.7 | 80.8 |
STPM+SE | 0.76 | 0.87 | 105.3 | 96.5 |
表2 注意力机制验证实验
Table 2 Attention mechanism verification experiment
算法模型 | ARI | ARP | S | FPS |
---|---|---|---|---|
STPM | 0.65 | 0.83 | 104.8 | 100 |
STPM+CA | 0.72 | 0.84 | 110.4 | 95.6 |
STPM+ECA | 0.75 | 0.86 | 108.0 | 88.4 |
STPM+ CBAM | 0.78 | 0.87 | 115.7 | 80.8 |
STPM+SE | 0.76 | 0.87 | 105.3 | 96.5 |
方法 | ARI | ARP | S | FPS |
---|---|---|---|---|
Relu | 0.76 | 0.87 | 105.3 | 96.5 |
Mish | 0.78 | 0.90 | 107.8 | 90.2 |
表3 激活函数验证实验
Table 3 Activate function verification experiment
方法 | ARI | ARP | S | FPS |
---|---|---|---|---|
Relu | 0.76 | 0.87 | 105.3 | 96.5 |
Mish | 0.78 | 0.90 | 107.8 | 90.2 |
方法 | ARI | ARP | S | FPS |
---|---|---|---|---|
STPM-SM | 0.78 | 0.90 | 107.8 | 90.2 |
STPM-SMSC | 0.82 | 0.93 | 117.9 | 80.2 |
表4 SPD-Conv模块验证实验
Table 4 SPD-Conv module verification experiment
方法 | ARI | ARP | S | FPS |
---|---|---|---|---|
STPM-SM | 0.78 | 0.90 | 107.8 | 90.2 |
STPM-SMSC | 0.82 | 0.93 | 117.9 | 80.2 |
指标 | 算法模型 | 64×64 | 32×32 | 16×16 | 结果 |
---|---|---|---|---|---|
ARP | STPM | 0.75 | 0.79 | 0.82 | 0.83 |
STPM-SMSC | 0.86 | 0.87 | 0.92 | 0.93 | |
ARI | STPM | 0.52 | 0.59 | 0.63 | 0.65 |
STPM-SMSC | 0.73 | 0.76 | 0.80 | 0.82 |
表5 图像不同分辨率的AR
Table 5 AR at different image resolutions
指标 | 算法模型 | 64×64 | 32×32 | 16×16 | 结果 |
---|---|---|---|---|---|
ARP | STPM | 0.75 | 0.79 | 0.82 | 0.83 |
STPM-SMSC | 0.86 | 0.87 | 0.92 | 0.93 | |
ARI | STPM | 0.52 | 0.59 | 0.63 | 0.65 |
STPM-SMSC | 0.73 | 0.76 | 0.80 | 0.82 |
图10 STPM-SMSC检测结果((a)高速公路火灾场景;(b)自制非车辆火灾场景;(c)~(g)隧道火灾场景)
Fig. 10 STPM-SMSC test results ((a) Highway fire scenarios; (b) Self-made non-vehicle fire scenarios; (c)~(g) Tunnel fire scenarios)
算法模型 | P | R | AR | S | FPS |
---|---|---|---|---|---|
YOLO v5 | 0.87 | 0.90 | 0.86 | 99.7 | 83.7 |
YOLO v4-Tiny | 0.74 | 0.78 | 0.75 | 76.6 | 97.2 |
SSD | 0.80 | 0.84 | 0.81 | 70.2 | 104.0 |
Faster R-CNN | 0.86 | 0.83 | 0.85 | 127.5 | 70.6 |
Swin Transformer | 0.88 | 0.89 | 0.89 | 105.6 | 75.8 |
STPM-SMSC | 0.93 | 0.94 | 0.93 | 117.9 | 80.2 |
表6 与现有方法对比结果
Table 6 Comparison results with existing methods
算法模型 | P | R | AR | S | FPS |
---|---|---|---|---|---|
YOLO v5 | 0.87 | 0.90 | 0.86 | 99.7 | 83.7 |
YOLO v4-Tiny | 0.74 | 0.78 | 0.75 | 76.6 | 97.2 |
SSD | 0.80 | 0.84 | 0.81 | 70.2 | 104.0 |
Faster R-CNN | 0.86 | 0.83 | 0.85 | 127.5 | 70.6 |
Swin Transformer | 0.88 | 0.89 | 0.89 | 105.6 | 75.8 |
STPM-SMSC | 0.93 | 0.94 | 0.93 | 117.9 | 80.2 |
图11 部分检测结果对比((a)原图;(b)真值;(c) YOLO v5;(d) YOLO v4-Tiny;(e) SSD;(f) Faster R-CNN;(g) Swin Transformer;(h) STPM-SMSC)
Fig. 11 Test result comparison ((a) Original image; (b) Ground Truth; (c) YOLO v5; (d) YOLO v4-Tiny; (e) SSD; (f) Faster R-CNN; (g) Swin Transformer; (h) STPM-SMSC)
[1] | 郝瑀然. 2021年交通运输行业发展统计公报[EB/OL]. (2022-05-25) [2022-12-06]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202205/t20220524_3656659.html. |
HAO Y R. Statistical bulletin on the development of the transport industry in 2021[EB/OL]. (2022-05-25) [2022-12-06]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202205/t20220524_3656659.html. (in Chinese) | |
[2] |
祝玉华, 司艺艺, 李智慧. 基于深度学习的烟雾与火灾检测算法综述[J]. 计算机工程与应用, 2022, 58(23): 1-11.
DOI |
ZHU Y H, SI Y Y, LI Z H. Overview of smoke and fire detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2022, 58(23): 1-11. (in Chinese)
DOI |
|
[3] | 陈嘉卿, 张冰, 宋英磊. 基于RGB统计颜色模型的火焰识别[J]. 江苏科技大学学报: 自然科学版, 2017, 31(2): 178-184. |
CHEN J Q, ZHANG B, SONG Y L. Flame recognition based on statistical RGB color model[J]. Journal of Jiangsu University of Science and Technology: Natural Science Edition, 2017, 31(2): 178-184. (in Chinese) | |
[4] |
SUN K L, ZHAO Q C, WANG X W. Using knowledge inference to suppress the lamp disturbance for fire detection[J]. Journal of Safety Science and Resilience, 2021, 2(3): 124-130.
DOI URL |
[5] |
XIE Y K, ZHU J, CAO Y G, et al. Efficient video fire detection exploiting motion-flicker-based dynamic features and deep static features[J]. IEEE Access, 2020, 8: 81904-81917.
DOI URL |
[6] | WANG Y B, DANG L F, REN J Y. Forest fire image recognition based on convolutional neural network[J]. Journal of Algorithms & Computational Technology, 2019, 13: 174830261988768. |
[7] |
王文朋, 毛文涛, 何建樑, 等. 基于深度迁移学习的烟雾识别方法[J]. 计算机应用, 2017, 37(11): 3176-3181, 3193.
DOI |
WANG W P, MAO W T, HE J L, et al. Smoke recognition based on deep transfer learning[J]. Journal of Computer Applications, 2017, 37(11): 3176-3181, 3193. (in Chinese)
DOI |
|
[8] | 张倩, 周平平, 王公堂, 等. 基于合成图像的Faster R-CNN森林火灾烟雾检测[J]. 山东师范大学学报: 自然科学版, 2019, 34(2): 180-185. |
ZHANG Q, ZHOU P P, WANG G T, et al. Faster r-cnn forest fire smoke detection based on synthetic images[J]. Journal of Shandong Normal University: Natural Science, 2019, 34(2): 180-185. (in Chinese) | |
[9] | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 4182-4191. |
[10] | XIE E Z, DING J, WANG W H, et al. DetCo: unsupervised contrastive learning for object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 8372-8381. |
[11] |
WANG L, YOON K J. Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3048-3068.
DOI URL |
[12] | SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[EB/OL]. [2022-12-06]. https://arxiv.org/abs/1803.02155. |
[13] | MISRA D. Mish: a self regularized non-monotonic neural activation function[EB/OL]. (2019-08-23) [2022-12-06]. https://arxiv.org/abs/1908.08681. |
[14] | SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[EB/OL]. [2022-12-06]. https://arxiv.org/abs/2208.03641. |
[15] | WANG G D, HAN S M, DING E R, et al. Student-teacher feature pyramid matching for unsupervised anomaly detection[EB/OL]. [2022-12-06]. https://arxiv.org/abs/2103.04257v2. |
[16] | COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. [2022-12-06]. https://arxiv.org/abs/2005.02357. |
[17] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[18] | HE K M, GIRSHICK R, DOLLAR P. Rethinking ImageNet pre-training[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 4917-4926. |
[19] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[20] | YAMADA S, HOTTA K. Reconstruction student with attention for student-teacher pyramid matching[EB/OL]. [2022-12-06]. https://arxiv.org/abs/2111.15376v2. |
[21] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[22] | 田龙, 朱朋朋. 高速公路隧道突发事件应急管理与应急预案[J]. 黑龙江交通科技, 2022, 45(4): 145-148. |
TIAN L, ZHU P P. Contingency management and emergency plan for highway tunnel emergencies[J]. Communications Science and Technology Heilongjiang, 2022, 45(4): 145-148. (in Chinese) | |
[23] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// European Conference on Computer Vision. Cham: Springer, 2014: 740-755. |
[24] |
RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1-3): 157-173.
DOI URL |
[25] | NARKHEDE S. Understanding auc-roc curve[J]. Towards Data Science, 2018, 26(1): 220-227. |
[26] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717. |
[27] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[28] | SHEN Z R, ZHANG M Y, ZHAO H Y, et al. Efficient attention: attention with linear complexities[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 3530-3538. |
[29] |
YAN B, FAN P, LEI X Y, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote Sensing, 2021, 13(9): 1619.
DOI URL |
[30] | 缪伟志, 陆兆纳, 王俊龙, 等. 基于视觉的火灾检测研究[J]. 森林工程, 2022, 38(1): 86-92, 100. |
MIAO W Z, LU Z N, WANG J L, et al. Fire detection research based on vision[J]. Forest Engineering, 2022, 38(1): 86-92, 100. (in Chinese) | |
[31] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[32] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[33] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002. |
[1] | 魏陈浩 , 杨睿 , 刘振丙 , 蓝如师 , 孙希延 , 罗笑南 .
具有双层路由注意力的 YOLOv8 道路场景目标检测方法
[J]. 图学学报, 2023, 44(6): 1104-1111. |
[2] | 丁建川, 肖金桐, 赵可新, 贾冬青, 崔炳德, 杨鑫 .
基于脉冲神经网络的复杂场景导航避障算法
[J]. 图学学报, 2023, 44(6): 1121-1129. |
[3] | 张丽媛, 赵海蓉, 何巍, 唐雄风 .
融合全局-局部注意模块的 Mask R-CNN膝关节囊肿检测方法
[J]. 图学学报, 2023, 44(6): 1183-1190. |
[4] | 张驰, 张效娟, 赵洋, 杨帆.
基于调色板的半交互式低照度唐卡图像增强
[J]. 图学学报, 2023, 44(6): 1202-1211. |
[5] | 杨陈成, 董秀成, 侯兵, 张党成, 向贤明, 冯琪茗. 基于参考的Transformer纹理迁移深度图像超分辨率重建[J]. 图学学报, 2023, 44(5): 861-867. |
[6] | 李利霞, 王鑫, 王军, 张又元. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666. |
[7] | 李鑫, 普园媛, 赵征鹏, 徐丹, 钱文华. 内容语义和风格特征匹配一致的艺术风格迁移[J]. 图学学报, 2023, 44(4): 699-709. |
[8] | 余伟群, 刘佳涛, 张亚萍. 融合注意力的拉普拉斯金字塔单目深度估计[J]. 图学学报, 2023, 44(4): 728-738. |
[9] | 胡欣, 周运强, 肖剑, 杨杰. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437. |
[10] | 郝鹏飞, 刘立群, 顾任远. YOLO-RD-Apple果园异源图像遮挡果实检测模型[J]. 图学学报, 2023, 44(3): 456-464. |
[11] | 罗文宇, 傅明月. 基于YoloX-ECA模型的非法野泳野钓现场监测技术[J]. 图学学报, 2023, 44(3): 465-472. |
[12] | 李雨, 闫甜甜, 周东生, 魏小鹏. 基于注意力机制与深度多尺度特征融合的自然场景文本检测[J]. 图学学报, 2023, 44(3): 473-481. |
[13] | 吴文欢, 张淏坤. 融合空间十字注意力与通道注意力的语义分割网络[J]. 图学学报, 2023, 44(3): 531-539. |
[14] | 谢国波, 贺笛轩, 何宇钦, 林志毅. 基于P-CenterNet的光学遥感图像烟囱检测[J]. 图学学报, 2023, 44(2): 233-240. |
[15] | 熊举举, 徐杨, 范润泽, 孙少聪. 基于轻量化视觉Transformer的花卉识别[J]. 图学学报, 2023, 44(2): 271-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||