[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[2] |
KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 1725-1732.
|
[3] |
SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videoss[C]// The 27th International Conference on Neural Information Processing Systems. New York: IEEE Press, 2014:568-576.
|
[4] |
蒋圣南, 陈恩庆, 郑铭耀, 等. 基于ResNeXt的人体动作识别[J]. 图学学报, 2020, 41(2): 277-282.
DOI
|
|
JIANG S N, CHEN E Q, ZHEN M Y, et al. Human action recognition based on ResNeXt[J]. Journal of Graphics, 2020, 41(02): 277-282 (in Chinese).
|
[5] |
NG J Y H, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: deep networks for video classification[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 4694-4702.
|
[6] |
杨世强, 杨江涛, 李卓, 等. 基于LSTM神经网络的人体动作识别[J]. 图学学报, 2021, 42(2): 174-181.
|
|
YANG S Q, YANG J T, LI Z, et al. Human action recognition based on LSTM neural network[J]. Journal of Graphics, 2021, 42(2): 174-181 (in Chinese).
DOI
|
[7] |
WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: towards good practices for deep action recognition[C]// European Conference on Computer Vision. Cham: Springer, 2016: 20-36.
|
[8] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 4489-4497.
|
[9] |
CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6299-6308.
|
[10] |
TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6450-6459.
|
[11] |
ZHANG Z Y. Microsoft kinect sensor and its effect[J]. IEEE Multimedia, 2012, 19(2): 4-10.
|
[12] |
FANG H S, XIE S Q, TAI Y W, et al. Rmpe: regional multi-person pose estimation[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2334-2343.
|
[13] |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7444-7452.
|
[14] |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 12026-12035.
|
[15] |
SHI L, ZHANG Y F, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 7912-7921.
|
[16] |
PLIZZARI C, CANNICI M, MATTEUCCI M. Skeleton-based action recognition via spatial and temporal transformer networks[J]. Computer Vision and Image Understanding, 2021, 208: 103219.
|
[17] |
安峰, 戴军, 韩振, 等. 引入注意力机制的自监督光流计算[J]. 图学学报, 2022, 43(5): 841-848.
|
|
AN F, DAI J, HAN Z, et al. Self-supervised optical flow estimation with attention module[J]. Journal of Graphics, 2022, 43(5): 841-848 (in Chinese).
|
[18] |
LEE J, LEE M, LEE D, et al. Hierarchically decomposed graph convolutional networks for skeleton-based action recognition[C]// 2023 IEEE International Conference on Computer Vision. New York: IEEE Press, 2023: 10444-10453.
|
[19] |
DONG J, SUN S, LIU Z, et al. Hierarchical contrast for unsupervised skeleton-based action representation learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(1): 525-533.
|
[20] |
SUN S K, LIU D Z, DONG J F, et al. Unified multi-modal unsupervised representation learning for skeleton-based action understanding[C]// The 31st ACM International Conference on Multimedia. New York: ACM, 2023: 2973-2984.
|
[21] |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]// 2021 IEEE International Conference on Computer Vision. New York: IEEE Press, 2021: 13359-13368.
|
[22] |
OBINATA Y, YAMAMOTO T. Temporal extension module for skeleton-based action recognition[C]// The 25th International Conference on Pattern Recognition. New York: IEEE Press, 2021: 534-540.
|
[23] |
LONG F, QIU Z, PAN Y, et al. Dynamic temporal filtering in video models[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 475-492.
|
[24] |
SHAHROUDY A, LIU J, NG T T, et al. NTR RGB+ D: a large scale dataset for 3d human activity analysis[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 1010-1019.
|
[25] |
KAY W, CARREIRA J, SIMONYAN K, et al. The kinetics human action video dataset[EB/OL]. [2023-08-19]. https://arxiv.org/abs/1705.06950v1.
|
[26] |
LI M S, CHEN S H, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 3595-3603.
|
[27] |
PENG W, HONG X P, CHEN H Y, et al. Learning graph convolutional network for skeleton-based human action recognition by neural searching[C]// The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 2669-2676.
|