图学学报 ›› 2024, Vol. 45 ›› Issue (5): 957-967.DOI: 10.11996/JG.j.2095-302X.2024050957
姜晓恒1,2,3(), 段金忠1, 卢洋1,2,3(
), 崔丽莎1,2,3, 徐明亮1,2,3
收稿日期:
2024-07-04
修回日期:
2024-07-17
出版日期:
2024-10-31
发布日期:
2024-10-31
通讯作者:
卢洋(1991-),女,讲师,博士。主要研究方向为计算机视觉和目标检测。E-mail:ieylu@zzu.edu.cn第一作者:
姜晓恒(1985-),男,教授,博士。主要研究方向为计算机视觉和深度学习。E-mail:jiangxiaoheng@zzu.edu.cn
基金资助:
JIANG Xiaoheng1,2,3(), DUAN Jinzhong1, LU Yang1,2,3(
), CUI Lisha1,2,3, XU Mingliang1,2,3
Received:
2024-07-04
Revised:
2024-07-17
Published:
2024-10-31
Online:
2024-10-31
Contact:
LU Yang (1991-), lecturer, Ph.D. Her main research interests cover computer vision and object detection. E-mail:ieylu@zzu.edu.cnFirst author:
JIANG Xiaoheng (1985-), professor, Ph.D. His main research interests cover computer vision and deep learning. E-mail:jiangxiaoheng@zzu.edu.cn
Supported by:
摘要:
当前基于深度学习的表面缺陷检测方法主要侧重于单独识别缺陷实例,即仅从区域特征方面考虑缺陷检测。然而,这种方法忽略了缺陷之间的高层关系,难免会出现缺陷检测误差。针对上述问题,提出了一种融合先验知识推理的表面缺陷检测网络(PKR-Net)。PKR-Net主要由2个部分组成,即显性知识推理模块(EKRM)和隐性知识推理模块(IKRM)。EKRM通过构建显性关系图(ERG)来捕获数据集中缺陷之间的全局共现关系得到共现关系特征,而IKRM通过构建隐性关系图(IRG)来捕获图像中缺陷之间的局部空间关系得到空间关系特征。最后将得到的共现关系特征和空间关系特征进行融合,并重新送入分类层和回归层以改进检测效果。在工业缺陷数据集Textile,NEU-DET和GC10-DET上进行实验验证,实验结果表明,该网络模型相比基线模型Faster RCNN,其mAP分别提升了14.8%,8.2%和18.9%,与其他缺陷检测模型相比能够达到更好的检测性能,验证了模型的有效性。
中图分类号:
姜晓恒, 段金忠, 卢洋, 崔丽莎, 徐明亮. 融合先验知识推理的表面缺陷检测[J]. 图学学报, 2024, 45(5): 957-967.
JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection[J]. Journal of Graphics, 2024, 45(5): 957-967.
模型 | 主干网络 | Textile数据集/% | NEU-DET数据集/% | GC10-DET数据集/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | AP50 | AP75 | mAP | AP50 | AP75 | mAP | AP50 | AP75 | ||
SSD512 | VGG16 | 37.9 | 71.5 | 30.9 | 31.2 | 67.5 | 24.3 | 29.2 | 59.9 | 26.7 |
Faster RCNN | ResNet101 | 41.2 | 76.4 | 34.9 | 36.6 | 72.7 | 32.9 | 28.5 | 62.3 | 23.1 |
FCOS | ResNet101 | 39.9 | 73.4 | 35.3 | 37.1 | 70.2 | 34.0 | 30.5 | 62.3 | 25.6 |
Sparse RCNN | ResNet101 | 39.9 | 67.9 | 38.8 | 38.1 | 69.0 | 37.3 | 28.9 | 59.7 | 24.6 |
RetinaNet | ResNet101 | 40.7 | 74.2 | 34.9 | 36.0 | 73.5 | 30.3 | 30.0 | 59.6 | 28.4 |
Cascade RCNN | ResNet101 | 46.2 | 79.0 | 44.4 | 38.7 | 73.5 | 36.6 | 32.5 | 65.5 | 30.2 |
YOLOX-s | CSPDarkNet53 | 46.5 | 79.5 | 41.9 | 37.7 | 71.7 | 34.7 | 31.3 | 63.3 | 29.8 |
Reasoning RCNN | ResNet101 | 45.5 | 78.4 | 40.7 | 38.2 | 73.5 | 36.6 | 31.2 | 65.8 | 27.2 |
LF-YOLO | - | 39.0 | 71.2 | 38.0 | 33.6 | 68.3 | 28.4 | 31.0 | 67.0 | 26.1 |
CANet | ResNet101 | 41.1 | 73.8 | 39.4 | 38.2 | 72.6 | 32.2 | 30.6 | 63.5 | 26.1 |
PKR-Net | ResNet101 | 47.3 | 80.2 | 45.6 | 39.6 | 76.4 | 35.6 | 33.9 | 67.4 | 30.7 |
表1 不同缺陷数据集上各模型评估结果对比
Table 1 Comparison of evaluation results of each model on different defect datasets
模型 | 主干网络 | Textile数据集/% | NEU-DET数据集/% | GC10-DET数据集/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | AP50 | AP75 | mAP | AP50 | AP75 | mAP | AP50 | AP75 | ||
SSD512 | VGG16 | 37.9 | 71.5 | 30.9 | 31.2 | 67.5 | 24.3 | 29.2 | 59.9 | 26.7 |
Faster RCNN | ResNet101 | 41.2 | 76.4 | 34.9 | 36.6 | 72.7 | 32.9 | 28.5 | 62.3 | 23.1 |
FCOS | ResNet101 | 39.9 | 73.4 | 35.3 | 37.1 | 70.2 | 34.0 | 30.5 | 62.3 | 25.6 |
Sparse RCNN | ResNet101 | 39.9 | 67.9 | 38.8 | 38.1 | 69.0 | 37.3 | 28.9 | 59.7 | 24.6 |
RetinaNet | ResNet101 | 40.7 | 74.2 | 34.9 | 36.0 | 73.5 | 30.3 | 30.0 | 59.6 | 28.4 |
Cascade RCNN | ResNet101 | 46.2 | 79.0 | 44.4 | 38.7 | 73.5 | 36.6 | 32.5 | 65.5 | 30.2 |
YOLOX-s | CSPDarkNet53 | 46.5 | 79.5 | 41.9 | 37.7 | 71.7 | 34.7 | 31.3 | 63.3 | 29.8 |
Reasoning RCNN | ResNet101 | 45.5 | 78.4 | 40.7 | 38.2 | 73.5 | 36.6 | 31.2 | 65.8 | 27.2 |
LF-YOLO | - | 39.0 | 71.2 | 38.0 | 33.6 | 68.3 | 28.4 | 31.0 | 67.0 | 26.1 |
CANet | ResNet101 | 41.1 | 73.8 | 39.4 | 38.2 | 72.6 | 32.2 | 30.6 | 63.5 | 26.1 |
PKR-Net | ResNet101 | 47.3 | 80.2 | 45.6 | 39.6 | 76.4 | 35.6 | 33.9 | 67.4 | 30.7 |
图6 不同缺陷数据集上各模型精确率-召回率曲线对比
Fig. 6 Comparison of precision-recall curves of each model on different defect datasets ((a) Textile dataset; (b) NEU-DET dataset; (c) GC10-DET dataset)
模型 | Textile 数据集 | NEU-DET 数据集 | GC10-DET 数据集 |
---|---|---|---|
SSD512 | 71.1 | 68.2 | 57.5 |
Faster RCNN | 70.0 | 71.2 | 58.5 |
FCOS | 69.1 | 70.5 | 62.7 |
Sparse RCNN | 64.7 | 67.6 | 57.1 |
RetinaNet | 67.0 | 70.7 | 61.2 |
Cascade RCNN | 74.0 | 72.7 | 62.3 |
YOLOX-s | 76.6 | 69.7 | 64.1 |
Reasoning RCNN | 74.5 | 70.0 | 60.4 |
LF-YOLO | 67.4 | 65.4 | 64.0 |
CANet | 68.6 | 71.7 | 62.2 |
PKR-Net | 77.3 | 74.7 | 64.8 |
表2 不同数据集上各模型F1指标对比/%
Table 2 Comparison of F1 metrics of different models on different datasets /%
模型 | Textile 数据集 | NEU-DET 数据集 | GC10-DET 数据集 |
---|---|---|---|
SSD512 | 71.1 | 68.2 | 57.5 |
Faster RCNN | 70.0 | 71.2 | 58.5 |
FCOS | 69.1 | 70.5 | 62.7 |
Sparse RCNN | 64.7 | 67.6 | 57.1 |
RetinaNet | 67.0 | 70.7 | 61.2 |
Cascade RCNN | 74.0 | 72.7 | 62.3 |
YOLOX-s | 76.6 | 69.7 | 64.1 |
Reasoning RCNN | 74.5 | 70.0 | 60.4 |
LF-YOLO | 67.4 | 65.4 | 64.0 |
CANet | 68.6 | 71.7 | 62.2 |
PKR-Net | 77.3 | 74.7 | 64.8 |
φ | γ | mAP/% | AP50/% |
---|---|---|---|
1.00 | 1.00 | 45.6 | 78.6 |
1.00 | 0.75 | 46.8 | 79.5 |
1.00 | 0.50 | 47.3 | 80.2 |
1.00 | 0.25 | 45.5 | 78.1 |
表3 Textile数据集上不同损失权重消融实验结果
Table 3 Ablation experiment results of different loss weights on Textile dataset
φ | γ | mAP/% | AP50/% |
---|---|---|---|
1.00 | 1.00 | 45.6 | 78.6 |
1.00 | 0.75 | 46.8 | 79.5 |
1.00 | 0.50 | 47.3 | 80.2 |
1.00 | 0.25 | 45.5 | 78.1 |
模型 | EKRM | IKRM | mAP/% | AP50/% |
---|---|---|---|---|
Faster RCNN | - | - | 41.2 | 76.4 |
PKR-Net | ✓ | - | 44.6 | 76.8 |
PKR-Net | - | ✓ | 45.0 | 77.0 |
PKR-Net | ✓ | ✓ | 47.3 | 80.2 |
表4 Textile数据集上不同模块下的消融实验结果
Table 4 Ablation experiment results under different modules on Textile dataset
模型 | EKRM | IKRM | mAP/% | AP50/% |
---|---|---|---|---|
Faster RCNN | - | - | 41.2 | 76.4 |
PKR-Net | ✓ | - | 44.6 | 76.8 |
PKR-Net | - | ✓ | 45.0 | 77.0 |
PKR-Net | ✓ | ✓ | 47.3 | 80.2 |
模块 | 知识形式 | mAP/% |
---|---|---|
EKRM | 全0 | 41.8 |
全1 | 42.3 | |
随机 | 42.1 | |
正常 | 44.6 | |
IKRM | 全0 | 41.7 |
全1 | 42.4 | |
随机 | 42.3 | |
正常 | 45.0 |
表5 Textile数据集上不同知识下的消融实验结果
Table 5 Ablation experiment results under different knowledge on Textile dataset
模块 | 知识形式 | mAP/% |
---|---|---|
EKRM | 全0 | 41.8 |
全1 | 42.3 | |
随机 | 42.1 | |
正常 | 44.6 | |
IKRM | 全0 | 41.7 |
全1 | 42.4 | |
随机 | 42.3 | |
正常 | 45.0 |
图7 不同缺陷数据集上基线模型与PKR-Net模型检测误差对比
Fig. 7 Comparison of detection errors between baseline and PKR-Net on different defect datasets ((a) Textile dataset; (b) NEU-DET dataset; (c) GC10-DET dataset; (d) Textile dataset; (e) NEU-DET dataset; (f) GC10-DET dataset)
图8 不同方法在Textile数据集上的检测结果对比
Fig. 8 Comparison of detection results of different methods on Textile dataset ((a) Ground Truth; (b) SSD512; (c) Faster RCNN; (d) FCOS; (e) Sparse RCNN; (f) RetinaNet; (g) Cascade RCNN; (h) YOLOx-s; (i) Reasoning RCNN; (j) LF-YOLO; (k) CANet; (l) PKR-Net)
图9 不同方法在NEU-DET数据集上的检测结果对比
Fig. 9 Comparison of detection results of different methods on NEU-DET dataset ((a) Ground Truth; (b) SSD512; (c) Faster RCNN; (d) FCOS; (e) Sparse RCNN; (f) RetinaNet; (g) Cascade RCNN; (h) YOLOx-s; (i) Reasoning RCNN; (j) LF-YOLO; (k) CANet; (l) PKR-Net)
图10 不同方法在GC10-DET数据集上的检测结果对比
Fig. 10 Comparison of detection results of different methods on GC10-DET dataset ((a) Ground Truth; (b) SSD512; (c) Faster RCNN; (d) FCOS; (e) Sparse RCNN; (f) RetinaNet; (g) Cascade RCNN; (h) YOLOx-s; (i) Reasoning RCNN; (j) LF-YOLO; (k) CANet; (l) PKR-Net)
[1] | 王素琴, 任琪, 石敏, 等. 基于异常检测的产品表面缺陷检测与分割[J]. 图学学报, 2022, 43(3): 377-386. |
WANG S Q, REN Q, SHI M, et al. Product surface defect detection and segmentation based on anomaly detection[J]. Journal of Graphics, 2022, 43(3): 377-386 (in Chinese).
DOI |
|
[2] | PARK Y, KWEON I S. Ambiguous surface defect image classification of AMOLED displays in smartphones[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 597-607. |
[3] | ZHANG Y, GAO Y, SHEN L Y. Steel defect detection based on modified RetinaNet[C]// 2022 26th International Conference on Pattern Recognition. New York: IEEE Press, 2022: 3572-3579. |
[4] | HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. |
[5] | 王道累, 刘易腾, 杜文斌, 等. 基于级联孪生密集网络的金属表面缺陷检测方法[J]. 计算机辅助设计与图形学学报, 2022, 34(6): 946-952. |
WANG D L, LIU Y T, DU W B, et al. A cascaded twin dense network based metallic surface defect detection algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(6): 946-952 (in Chinese). | |
[6] | YU X Y, LYU W T, ZHOU D, et al. ES-Net: efficient scale-aware network for tiny defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3511314. |
[7] | CUI L S, JIANG X H, XU M L, et al. SDDNet: a fast and accurate network for surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2505713. |
[8] | 罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039. |
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica Informationis, 2022, 52(6): 1002-1039 (in Chinese). | |
[9] | JIANG X H, YAN F, LU Y, et al. Joint attention-guided feature fusion network for saliency detection of surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2520912. |
[10] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[11] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2024-03-12]. http://arxiv.org/abs/1409.1556. |
[12] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[13] | 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034. |
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034 (in Chinese). | |
[14] |
胡欣, 胡帅, 马丽军, 等. 基于融合MBAM与YOLOv5的PCB缺陷检测方法[J]. 图学学报, 2024, 45(1): 47-55.
DOI |
HU X, HU S, MA L J, et al. PCB defect detection method based on fusion of MBAM and YOLOv5[J]. Journal of Graphics, 2024, 45(1): 47-55 (in Chinese).
DOI |
|
[15] | JIA P T, GUO T, GUO F J, et al. Detection model of drainage pipe defect based on improved YOLOv5[C]// 2023 8th International Conference on Intelligent Computing and Signal Processing. New York: IEEE Press, 2023: 1950-1955. |
[16] | ZENG Q T, WEI D B, ZHANG X, et al. MFAM-Net: a surface defect detection network for strip steel via multiscale feature fusion and attention mechanism[C]// 2023 International Conference on New Trends in Computational Intelligence. New York: IEEE Press, 2023: 117-121. |
[17] | FANG Y, KUAN K, LIN J, et al. Object detection meets knowledge graphs[EB/OL]. [2024-02-23]. https://www.ijcai.org/proceedings/2017/230. |
[18] | JIANG C H, XU H, LIANG X D, et al. Hybrid knowledge routed modules for large-scale object detection[C]// The 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018: 1559-1570. |
[19] | XU H, JIANG C H, LIANG X D, et al. Reasoning-RCNN: unifying adaptive global reasoning into large-scale object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6412-6421. |
[20] | ZHAI Y J, YANG X, WANG Q M, et al. Hybrid knowledge R-CNN for transmission line multifitting detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5013312. |
[21] | PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]// The 28th International Conference on Neural Information Processing Systems. California: MIT Press, 2015: 505-513. |
[22] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
DOI PMID |
[23] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2024-01-13]. http://arxiv.org/abs/1609.02907. |
[24] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2024-02-22]. http://arxiv.org/abs/1710.10903. |
[25] | ZHAI Y J, WANG Q M, YANG X, et al. Multi-fitting detection on transmission line based on cascade reasoning graph network[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4858-4868. |
[26] | SHU X, LIU R, XU J. A semantic relation graph reasoning network for object detection[C]// 2021 IEEE 10th Data Driven Control and Learning Systems Conference. New York: IEEE Press, 2021: 1309-1314. |
[27] | HWANG J, KANG S, CHUNG K. GCN-based semantic relation network for few-shot object detection[C]// 2022 13th International Conference on Information and Communication Technology Convergence. New York: IEEE Press, 2022: 1689-1693. |
[28] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[29] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Heidelberg: Springer, 2018: 3-19. |
[30] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[31] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[32] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[33] | LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors, 2020, 20(6): 1562. |
[34] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]// The 13th European Conference on Computer Vision. Heidelberg: Springer, 2014: 740-755. |
[35] | CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[EB/OL]. (2019-06-17) [2024-02-12]. http://arxiv.org/abs/1906.07155. |
[36] | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[37] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Heidelberg: Springer, 2016: 21-37. |
[38] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9626-9635. |
[39] | SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14449-14458. |
[40] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. |
[41] | CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[42] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2024-03-11]. http://arxiv.org/abs/2107.08430. |
[43] | LIU M Y, CHEN Y P, XIE J M, et al. LF-YOLO: a lighter and faster YOLO for weld defect detection of X-ray image[J]. IEEE Sensors Journal, 2023, 23(7): 7430-7439. |
[44] | HOU X Q, LIU M Q, ZHANG S L, et al. CANet: contextual information and spatial attention based network for detecting small defects in manufacturing industry[J]. Pattern Recognition, 2023, 140: 109558. |
[1] | 李琼 , 考月英 , 张莹 , 徐沛 . 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[2] | 刘灿锋, 孙浩, 东辉. 结合 Transformer 与 Kolmogorov Arnold 网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45(6): 1256-1265. |
[3] | 宋思程, 陈辰, 李晨辉, 王长波. 基于密度图多目标追踪的时空数据可视化[J]. 图学学报, 2024, 45(6): 1289-1300. |
[4] | 李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312. |
[5] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
[6] | 王宗继, 刘云飞, 陆峰. Cloud Sphere: 一种基于渐进式变形自编码的三维模型表征方法[J]. 图学学报, 2024, 45(6): 1375-1388. |
[7] | 许丹丹, 崔勇, 张世倩, 刘雨聪, 林予松. 优化医学影像三维渲染可视化效果:技术综述[J]. 图学学报, 2024, 45(5): 879-891. |
[8] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[9] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[10] | 翟永杰, 李佳蔚, 陈年昊, 王乾铭, 王新颖. 融合改进Transformer的车辆部件检测方法[J]. 图学学报, 2024, 45(5): 930-940. |
[11] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[12] | 熊超, 王云艳, 罗雨浩. 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
[13] | 李建华, 韩宇, 石开铭, 张可嘉, 郭红领, 方东平, 曹佳明. 施工现场小目标工人检测方法[J]. 图学学报, 2024, 45(5): 1040-1049. |
[14] | 孙己龙, 刘勇, 周黎伟, 路鑫, 侯小龙, 王亚琼, 王志丰. 基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究[J]. 图学学报, 2024, 45(5): 1050-1061. |
[15] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||