欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (4): 845-855.DOI: 10.11996/JG.j.2095-302X.2024040845

• 建筑与城市信息模型 • 上一篇    下一篇

基于BIM和三维激光扫描的桁架几何质量自动化检测研究

邹亚坤1,2(), 陈贤川1,2, 谭毅1,2(), 林永枫3, 张亚飞3   

  1. 1.深圳大学土木与交通工程学院中澳BIM与智慧建造联合研究中心,广东 深圳 518000
    2.深圳大学滨海城市韧性基础设施教育部重点实验室,广东 深圳 518000
    3.广州建筑湾区智造科技有限公司,广东,广州 510000
  • 收稿日期:2023-11-26 接受日期:2024-03-24 出版日期:2024-08-31 发布日期:2024-09-03
  • 通讯作者:谭毅(1989-),男,副教授,博士。主要研究方向为计算机视觉、数字孪生、BIM和工程物联网等。E-mail:tanyi@szu.edu.cn
  • 第一作者:邹亚坤(2000-),男,硕士研究生。主要研究方向为点云数据处理与BIM。E-mail:2210474005@email.szu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52308319);广东省自然科学基金项目(2023A1515011119)

Automated detection of truss geometric quality based on BIM and 3D laser scanning

ZOU Yakun1,2(), CHEN Xianchuan1,2, TAN Yi1,2(), LIN Yongfeng3, ZHANG Yafei3   

  1. 1. Sino-Australia Joint Research Center in BIM and Smart Construction, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
    2. Key Laboratory of Coastal Urban Resilient Infrastructure (MOE), Shenzhen University, Shenzhen Guangdong 518000, China
    3. GMC Grand-bay Intelligent Manufacturing and Technology Co., Ltd., Guangzhou Guangdong 510000, China
  • Received:2023-11-26 Accepted:2024-03-24 Published:2024-08-31 Online:2024-09-03
  • Contact: TAN Yi (1989-), associate professor, Ph.D. His main research interests cover computer vision, digital twin, BIM and engineering IoT, etc. E-mail:tanyi@szu.edu.cn
  • First author:ZOU Yakun (2000-), master student. His main research interests cover point cloud data process and BIM. E-mail:2210474005@email.szu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52308319);Natural Science Foundation of Guangdong Province of China(2023A1515011119)

摘要:

桁架结构因其自重轻、承载能力强而广泛应用于大跨度公共建筑中,随着使用时间的增加,需要对其结构几何质量进行定期检测以确保其安全性。然而,传统的桁架结构几何质量检测主要依赖人工手段,效率低下且成本高昂。为了实现桁架结构的高效几何质量检测,提出一种基于建筑信息模型(BIM)和三维激光扫描的自动化检测算法。首先,通过BIM将获得的原始点云数据中的桁架结构与背景分离。然后,基于关键点检测技术自动提取桁架结构的几何特征并实现节点坐标的定位计算。最后,将计算结果与BIM中的设计信息进行比较,获得几何质量检测结果。深圳市某校园内的演会中心被用于该方法的验证。实验结果表明,该算法的计算结果与全站仪的测量结果误差不超过2 mm。其与BIM模型数据进行对比,检测出桁架结构的节点存在不同程度的沉降。因此,该方法能准确快速地实现节点的空间定位,提高桁架结构几何质量检测的效率。

关键词: 自动化, 桁架, 几何质量, BIM, 三维激光扫描

Abstract:

The truss structure, widely employed in large-span public buildings for its lightweight and high load-bearing capacity, requires periodic inspections of its geometric quality to ensure safety with its usage over time. However, conventional methods for inspecting the geometric quality of truss structures rely mainly on manual processes, which are inefficient and costly.This paper proposed an automated detection algorithm to perform geometric quality inspection of truss structures. Firstly, the truss structure was separated from the background in the acquired raw point cloud data using building information model (BIM). Subsequently, an algorithm based on key point detection technology automatically extracted geometric features of the truss structure and calculated node coordinates. Finally, by comparing computed results with the BIM design information, geometric quality inspection results were obtained. The validation of the proposed method was conducted in the auditorium of a campus in Shenzhen, China. The experimental results demonstrated that the computational outcomes of the proposed algorithm exhibited an error within 2 mm compared to the measurements obtained from the total station. When the computational results of the proposed method were contrasted with BIM model data, variations in the truss structure nodes were detected, indicating different degrees of settlement. Consequently, the proposed method enabled accurate and rapid spatial positioning of nodes, thereby enhancing the efficiency of geometric quality inspection for truss structures.

Key words: automation, truss, geometric quality, building information model, 3D laser scanning

中图分类号: