欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (5): 1017-1029.DOI: 10.11996/JG.j.2095-302X.2024051017

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于空间信息关注和纹理增强的短小染色体分类方法

彭文(), 林金炜   

  1. 华北电力大学控制与计算机工程学院,北京 102206
  • 收稿日期:2024-05-07 修回日期:2024-08-28 出版日期:2024-10-31 发布日期:2024-10-31
  • 第一作者:彭文(1980-),男,副教授,博士。主要研究方向为医学图像配准、医学影像分析等。E-mail:pengwen@ncepu.edu.cn

A short chromosome classification method based on spatial attention and texture enhancement

PENG Wen(), LIN Jinwei   

  1. School of Control and Computer Engineering North China Electric Power University, Beijing 102206, China
  • Received:2024-05-07 Revised:2024-08-28 Published:2024-10-31 Online:2024-10-31
  • First author:PENG Wen (1980-), associate professor, Ph.D. His main research interests cover medical image registration, medical image analysis, etc. E-mail:pengwen@ncepu.edu.cn

摘要:

染色体分类是核型分析中的重要任务之一。尽管残差神经网络已经在染色体分类领域取得了显著成就,但由于部分染色体具有长度较短、分类特征难以识别以及形态相似度较高的特点,使得其分类仍然具有挑战性。提出了基于空间信息关注和纹理增强的染色体分类模型(SIATE-Net),以Inception_ResNetV2模型作为骨干网络提取染色体的深层特征,自注意力机制和深度可分离卷积的引入能够更好地关注和保留短小染色体的空间信息。染色体长度较短易造成显带信息混淆,模型融入了纹理增强机制以扩大染色体间的差异性,为分类任务增加更多的判定依据。SIATE-Net模型分别在私人数据集与公开数据集上进行验证,分类性能明显优于其他方法,尤其是短小染色体。在私人数据集上,SIATE-Net模型表现出了最佳的总体分类准确率98.05%,短小染色体分类精度高达97.42%。在公开数据集上,SIATE-Net模型的总体分类准确率为98.95%,而短小染色体也达到了98.51%。实验结果表明,具有较强针对性的自注意力模块、深度可分离卷积和纹理增强模块在不降低整体分类准确性的前提下,能够有效地解决短小染色体分类任务。

关键词: 医学图像处理, 短小染色体分类, Inception_ResNetV2模型, 自注意力机制, 深度可分离卷积, 纹理增强

Abstract:

Chromosome classification is a crucial task in karyotype analysis. Despite the significant achievements made by residual neural networks in chromosome classification, the classification still presents challenges due to the short length, difficult-to-identify classification features, and high morphological similarity of certain chromosomes. To address this issue, a spatial information attention and texture enhancement network (SIATE-Net) model was proposed for chromosome classification. The SIATE-Net model utilized the Inception_ResNetV2 model as its backbone network to extract deep features of chromosomes. By introducing self-attention mechanisms and depth-wise separable convolution, the model could better focus on and retain the spatial information of short chromosomes. The short length of certain chromosomes often leads to confusion in banding information. To mitigate this issue, the model integrated a texture enhancement mechanism to amplify the differences between chromosomes, providing the model with more discriminative features for classification. The SIATE-Net model was validated on both private and public datasets, demonstrating superior classification performance compared to other methods, especially in classifying short chromosomes. On the private dataset, the SIATE-Net model achieved the best overall classification accuracy of 98.05%, with a high accuracy of 97.42% for short chromosomes. On the public dataset, the overall classification accuracy of the SIATE-Net model was 98.95%, with short chromosomes reaching an accuracy of 98.51%. Experimental results demonstrated that the targeted self-attention module, depth-wise separable convolution, and texture enhancement module effectively addressed the classification of short chromosomes without compromising overall classification accuracy.

Key words: medical image processing, short chromosome classification, Inception_ResNetV2 model, self-attention mechanism, depth-wise separable convolution, texture enhancement

中图分类号: