图学学报 ›› 2024, Vol. 45 ›› Issue (5): 1084-1095.DOI: 10.11996/JG.j.2095-302X.2024051084
谭坤1(), 王旭鹏1,2(
), 赵嘉鑫2, 黄昱喆1, 李旭1, 李嘉琛1
收稿日期:
2024-05-10
修回日期:
2024-07-11
出版日期:
2024-10-31
发布日期:
2024-10-31
通讯作者:
王旭鹏(1981-),男,教授,博士。主要研究方向为运动生物力学、“医-工”交叉创新设计与仿真、计算机辅助工业设计。E-mail:wangxupeng@xaut.edu.cn第一作者:
谭坤(1997-),男,硕士研究生。主要研究方向为“医-工”交叉创新设计与仿真。E-mail:tankunticoa@foxmail.com
基金资助:
TAN Kun1(), WANG Xupeng1,2(
), ZHAO Jiaxin2, HUANG Yuzhe1, LI Xu1, LI Jiachen1
Received:
2024-05-10
Revised:
2024-07-11
Published:
2024-10-31
Online:
2024-10-31
Contact:
WANG Xupeng (1981-), professor, Ph.D. His main research interests cover sports biomechanics, “medical-engineering” cross-innovation design and simulation, computer-aided industrial design, etc. E-mail:wangxupeng@xaut.edu.cnFirst author:
TAN Kun (1997-), master student. His main research interests cover “medical-engineering” cross-innovation design and simulation. E-mail:tankunticoa@foxmail.com
Supported by:
摘要:
针对全民健身运动人们对于可穿戴运动护具产品不断增长的使用需求,需解决现有预制型护具中存在的防护性能不足、运动穿戴匹配度低等问题。首先,采用逆向工程、服装压力计算理论等关键技术与方法对皮肤形变、护具压力等关键参数进行采集,定性与定量分析了人体运动过程中,下肢皮肤形变与曲率压力分布区域变化规律,并构建人体膝关节护具功能分区模型;其次,根据不同划分区域,完成了膝关节变刚度护具分区结构设计;然后,采用有限元仿真方法构建膝关节-护具有限元模型,对比分析多组护具穿戴条件下的接触压力分布规律;最后,结合护具穿戴压力与肌电采集实验,验证膝关节变刚度护具可以有效优化膝关节压力分布,提高穿戴贴合度和提升运动表现。
中图分类号:
谭坤, 王旭鹏, 赵嘉鑫, 黄昱喆, 李旭, 李嘉琛. 基于下肢生物力学特性的膝关节变刚度护具设计[J]. 图学学报, 2024, 45(5): 1084-1095.
TAN Kun, WANG Xupeng, ZHAO Jiaxin, HUANG Yuzhe, LI Xu, LI Jiachen. Design of knee joint variable stiffness protector based on lower limb biomechanical characteristics[J]. Journal of Graphics, 2024, 45(5): 1084-1095.
图2 实验区域定义与网格划分((a)膝关节网格划分图;(b)膝围线纵向均分点)
Fig. 2 Definition of experimental area and grid division ((a) Mesh division diagram of knee joint; (b) Longitudinal midpoint of knee circumference line)
图3 膝关节点云数据三维扫描((a)膝关节扫描图;(b)膝关节标记点粘贴图)
Fig. 3 3D scanning of knee joint point cloud data ((a) Knee joint scanning image; (b) Knee joint marker stickers)
图13 各个角度模型曲率压力分布云图((a)前侧;(b)外侧;(c)后侧;(d)内侧)
Fig. 13 Curvature pressure distribution cloud map of models at various angles ((a) Front; (b) Outside; (c) Back; (d) Inside)
纱线原料 | 纱线细度/tex |
---|---|
高弹涤纶丝 | 16.67/96 f (150 D/96 f) |
高弹氨纶丝 | 7.78/100 f (70D/100 f) |
橡筋纱 | 124.44 (1 120 D) |
表1 纱线基本参数
Table 1 Basic parameters of yarn
纱线原料 | 纱线细度/tex |
---|---|
高弹涤纶丝 | 16.67/96 f (150 D/96 f) |
高弹氨纶丝 | 7.78/100 f (70D/100 f) |
橡筋纱 | 124.44 (1 120 D) |
尺码 | 膝关节护具(宽度) | 膝关节(围长) | ||||
---|---|---|---|---|---|---|
下围 | 膝围 | 上围 | 小腿 | 膝围 | 大腿 | |
M | 15 | 14 | 17 | 36~39 | 30~35 | 41~44 |
L | 17 | 16 | 19 | 40~43 | 36~40 | 45~48 |
XL | 18 | 17 | 21 | 44~48 | 41~45 | 48~52 |
Lx | 19 | 16 | 17 | 42 | 40 | 48 |
表2 膝关节护具尺码表/mm
Table 2 Knee joint protector size chart/mm
尺码 | 膝关节护具(宽度) | 膝关节(围长) | ||||
---|---|---|---|---|---|---|
下围 | 膝围 | 上围 | 小腿 | 膝围 | 大腿 | |
M | 15 | 14 | 17 | 36~39 | 30~35 | 41~44 |
L | 17 | 16 | 19 | 40~43 | 36~40 | 45~48 |
XL | 18 | 17 | 21 | 44~48 | 41~45 | 48~52 |
Lx | 19 | 16 | 17 | 42 | 40 | 48 |
图16 膝关节护具织物刚度定性分区优化设计图((a)护具分区设计;(b)护具侧面支撑设计;(c)腘窝区域降密设计)
Fig. 16 Qualitative zoning optimization design diagram for stiffness of joint protective equipment fabric ((a) Protective gear zoning design; (b) Side support of protective gear design; (c) Design of density reduction in the popliteal fossa area)
图17 膝关节与护具模型((a)均匀针织护具;(b) X加压型护具;(c)膝关节变刚度护具)
Fig. 17 Knee joint and protective gear model ((a) Uniform knitted protective gear; (b) X pressurized protective gear; (c) Knee joint stiffness protective gear)
项目 | 材料1 |
---|---|
成分 | 66%锦纶、18%聚酯纤维、16%氨纶 |
弹性模量/MPa | 0.429 4 |
泊松比 | 0.34 |
密度/t·mm-3 | 9.86e-10 |
表3 运动护具材料属性
Table 3 Material properties of sports protective equipment
项目 | 材料1 |
---|---|
成分 | 66%锦纶、18%聚酯纤维、16%氨纶 |
弹性模量/MPa | 0.429 4 |
泊松比 | 0.34 |
密度/t·mm-3 | 9.86e-10 |
膝关节 | 弹性模量/MPa | 泊松比 | 密度/t·mm-3 |
---|---|---|---|
骨骼 | 7 300 | 0.3 | 1.90E-10 |
肌肉软组织 | 0.15 | 0.45 | 1.10E-10 |
表4 膝关节骨骼、肌肉软组织材料属性
Table 4 Materials properties of knee joint bones, muscles, and soft tissues
膝关节 | 弹性模量/MPa | 泊松比 | 密度/t·mm-3 |
---|---|---|---|
骨骼 | 7 300 | 0.3 | 1.90E-10 |
肌肉软组织 | 0.15 | 0.45 | 1.10E-10 |
护具 | 压力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
表5 膝关节皮肤表面接触压力分布/MPa
Table 5 Surface contact pressure distribution of knee joint skin/MPa
护具 | 压力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
表6 膝关节护具应力分布/MPa
Table 6 Stress distribution of knee joint protectors/MPa
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
表7 膝关节表面应力分布/Mpa
Table 7 Stress distribution of knee joint surface/MPa
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
护具 | 位移 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
表8 膝关节皮肤表面位移分布/mm
Table 8 Surface displacement distribution of knee joint skin/mm
护具 | 位移 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
图20 实验过程图((a)压力测量点位置;(b)护具测量点压力采集)
Fig. 20 Experimental process diagram ((a) Location of pressure measurement points; (b) Pressure collection at protective gear measurement points)
图22 实验过程图((a)前侧电极片粘贴;(b)右侧电极片粘贴;(c)后侧电极片粘贴;(d)下肢肌电信号采集)
Fig. 22 Experimental process diagram ((a) Front electrode sticking; (b) Right electrode sticking; (c) Rear electrode plate pasting; (d) Lower limb electromyographic signal acquisition)
[1] | 陈凌娴, 李俊, 王敏. 护膝防护性能及其功能设计研究进展[J]. 毛纺科技, 2022, 50(3): 117-123. |
CHEN L X, LI J, WANG M. Research progress of the protection performance and functional design of kneepad[J]. Wool Textile Journal, 2022, 50(3): 117-123 (in Chinese). | |
[2] | 于晓平. 普通高校大学生膝关节损伤调查及预防分析[J]. 辽宁体育科技, 2020, 42(1): 124-128. |
YU X P. An analysis on survey and precaution of college students’ knee-joints juries in colleges and universities[J]. Liaoning Sport Science and Technology, 2020, 42(1): 124-128 (in Chinese). | |
[3] | 刘宸鋆, 荣湘江, 刘华, 等. 膝关节护具对男性大学生慢跑状态下膝关节角度的影响[J]. 中国康复医学杂志, 2021, 36(9): 1158-1161. |
LIU C Y, RONG X J, LIU H, et al. The effect of knee joint protectors on the knee joint angle of male college students during jogging[J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(9): 1158-1161 (in Chinese). | |
[4] | 张峻霞, 张子倩, 邵洋洋, 等. 基于运动生物力学的护膝设计评价[J]. 包装工程, 2020, 41(24): 1-7. |
ZHANG J X, ZHANG Z Q, SHAO Y Y, et al. Evaluation of kneepad design based on sports biomechanics[J]. Packaging Engineering, 2020, 41(24): 1-7 (in Chinese). | |
[5] | POPA A A, DRIMUS A, MACDONALD E W, et al. A conformal, optimized 3D printed kneepad with deformation sensing[J]. IEEE Access, 2021, 9: 126873-126881. |
[6] | 张芳兰, 刘龙吉, 姚宛彤. 面向关键用户需求的踝足矫形器定制化设计方法[J]. 图学学报, 2021, 42(5): 841-848. |
ZHANG F L, LIU L J, YAO W T. Customized design method of ankle-foot orthosis oriented to the needs of key users[J]. Journal of Graphics, 2021, 42(5): 841-848 (in Chinese). | |
[7] |
白宇, 王坤. 基于参数化的3D打印个性化外固定支具设计研究[J]. 图学学报, 2023, 44(5): 1050-1056.
DOI |
BAI Y, WANG K. Research on personalized external fixator design based on parametric 3D printing[J]. Journal of Graphics, 2023, 44(5): 1050-1056 (in Chinese).
DOI |
|
[8] | 王旭鹏, 李琳, 王芸倩, 等. 适老化矫形康复类可穿戴产品的设计方法研究[EB/OL]. [2024-01-03]. http://kns.cnki.net/kcms/detail/61.1294.N.20230424.1401.006.html. |
WANG X P, LI L, WANG Y Q, et al. Research on the design methods of elderly-oriented wearable orthopedic rehabilitation products[EB/OL]. [2024-01-03]. http://kns.cnki.net/kcms/detail/61.1294.N.20230424.1401.006.html (in Chinese). | |
[9] | 段洁洁, 宋晓霞. 三维成形针织护膝的编织工艺设计与开发[J]. 服装学报, 2022, 7(3): 218-222. |
DUAN J J, SONG X X. Weaving process design and development of three-dimensional knitted kneepad[J]. Journal of Clothing Research, 2022, 7(3): 218-222 (in Chinese). | |
[10] |
王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
DOI |
WANG Y T, CONG H L, GU H Y. Structural design and thermal-moist comfort of weft knitted knee pads[J]. Journal of Textile Research, 2023, 44(10): 68-74 (in Chinese).
DOI |
|
[11] | 胡紫薇, 杨洪君. 运动护膝舒适性影响因素探究[J]. 设计, 2020, 33(7): 20-24. |
HU Z W, YANG H J. Research on influencing factors of comfort of sports knee support[J]. Design, 2020, 33(7): 20-24 (in Chinese). | |
[12] | 张丰烁, 王燕珍. 基于女青年下肢关节活动角度变化的皮肤形变研究[J]. 北京服装学院学报: 自然科学版, 2022, 42(3): 35-43. |
ZHANG F S, WANG Y Z. Study on skin deformation based on angle change of lower limb joint activity in young women[J]. Journal of Beijing Institute of Fashion Technology: Natural Science Edition, 2022, 42(3): 35-43 (in Chinese). | |
[13] | 张春强. 足踝护具产品设计理论与方法研究[D]. 西安: 西安理工大学, 2022. |
ZHANG C Q. Research on the theory and method for foot and ankle protection design[D]. Xi’an: Xi’an University of Technology, 2022 (in Chinese). | |
[14] | 曾露露, 谢红. 有限元法预测运动护膝在不同运动状态下对膝关节韧带的影响[J]. 中国组织工程研究, 2023, 27(36): 5771-5777. |
ZENG L L, XIE H. Finite element method for predicting the effect of sports knee brace on knee ligaments under different sports conditions[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(36): 5771-5777 (in Chinese). | |
[15] | 谢红, 刘星辰, 沈云萍. 弹性护膝防护效果预测模型的分析[J]. 服装学报, 2023, 8(2): 108-117. |
XIE H, LIU X C, SHEN Y P. Analysis of protective effect prediction models of elastic knee pads[J]. Journal of Clothing Research, 2023, 8(2): 108-117 (in Chinese). | |
[16] |
AKRAMI M, QIAN Z H, ZOU Z M, et al. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions[J]. Biomechanics and Modeling in Mechanobiology, 2018, 17(2): 559-576.
DOI PMID |
[17] | KUZMICHEV V E, CHENG Z. Sizing and fit for pressure garments[M]//ZAKARIA N, GUPTA D. Anthropometry, Apparel Sizing and Design. 2nd ed. Oxford: Woodhead Publishing, 2020: 331-370. |
[18] | 李海涛. 全成型医用压力绷带的设计与研究[D]. 天津: 天津工业大学, 2007. |
LI H T. Design and research of fully formed medical pressure bandages[D]. Tianjin: Tianjin Polytechnic University, 2007 (in Chinese). | |
[19] | 刘星辰, 谢红. 基于有限元建模技术的下肢着袜舒适性分析[J]. 上海纺织科技, 2021, 49(11): 18-21. |
LIU X C, XIE H. Analysis of the comfortability of lower limb socks based on finite element modeling technology[J]. Shanghai Textile Science & Technology, 2021, 49(11): 18-21 (in Chinese). |
[1] | 张丽媛, 赵海蓉, 何巍, 唐雄风. 融合全局-局部注意模块的Mask R-CNN膝关节囊肿检测方法[J]. 图学学报, 2023, 44(6): 1183-1190. |
[2] | 王向东, 董琦奇. 基于平面棋盘格标定板的三维空间标定新方法[J]. 图学学报, 2016, 37(6): 778-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||