欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1183-1190.DOI: 10.11996/JG.j.2095-302X.2023061183

• 图像处理与计算机视觉 • 上一篇    下一篇

融合全局-局部注意模块的Mask R-CNN膝关节囊肿检测方法

张丽媛1(), 赵海蓉1, 何巍1(), 唐雄风2   

  1. 1.长春理工大学计算机科学技术学院,吉林 长春 130022
    2.吉林大学第二医院骨科医疗中心,吉林 长春 130041
  • 收稿日期:2023-06-25 接受日期:2023-08-28 出版日期:2023-12-31 发布日期:2023-12-17
  • 通讯作者: 何巍(1978-),女,教授,博士。主要研究方向为机器学习和医学图像处理。E-mail:hewei@cust.edu.cn
  • 作者简介:

    张丽媛(1990-),女,副教授,博士。主要研究方向为计算机视觉和医学图像处理。E-mail:zhangliyuanzly@cust.edu.cn

  • 基金资助:
    国家自然科学基金项目(U21A20390);吉林省自然科学基金项目(YDZJ202101ZYTS036)

Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module

ZHANG Li-yuan1(), ZHAO Hai-rong1, HE Wei1(), TANG Xiong-feng2   

  1. 1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun Jilin 130022, China
    2. Orthopedic Medical Center, Jilin University Second Hospital, Changchun Jilin 130041, China
  • Received:2023-06-25 Accepted:2023-08-28 Online:2023-12-31 Published:2023-12-17
  • Contact: HE Wei (1978-), professor, Ph.D. Her main research interests cover machine learning and medical image analysis. E-mail:hewei@cust.edu.cn
  • About author:

    ZHANG Li-yuan (1990-), associate professor, Ph.D. Her main research interests cover computer vision and medical image analysis.
    E-mail:zhangliyuanzly@cust.edu.cn

  • Supported by:
    National Natural Science Foundation of China(U21A20390);Natural Science Foundation of Jilin Province(YDZJ202101ZYTS036)

摘要:

精准的膝关节囊肿检测是辅助多种膝关节疾病进行早期诊断和治疗的有效手段。然而,由于MR影像中膝关节囊肿与关节内积液和囊肿型肿瘤等其他病灶在影像特征上比较相似,导致检测任务难度较大。因此,提出了一种融合全局-局部注意模块的Mask R-CNN多任务学习模型,同时实现MR影像中膝关节囊肿的自动识别、检测与分割。首先,该方法利用通道注意力机制,将膝关节影像的全局特征和局部特征进行加权融合,形成具有多尺度信息的特征图,为模型提供更准确的判别特征。其次,引入多任务不确定性损失函数,采用同方差不确定性表明每个任务的相对置信度,对任务权重进行自适应调整,可以自动搜索最优解。最后,使用GrabCut方法基于预标记边界框生成掩码,进一步构建膝关节MR影像数据集,提升了数据标注的质量和效率。实验结果表明,该方法可以准确识别膝关节MR影像中的囊肿病灶,同时检测和分割平均精度分别达到了92.3%和92.8%,效果上优于其他对比方法。

关键词: 膝关节囊肿, 多任务学习, 注意力机制, 多尺度特征融合, Mask R-CNN

Abstract:

Accurately detecting knee cysts is an effective means for facilitating early diagnosis and treatment of various knee-related diseases. However, the task of detecting knee cysts can be challenging due to their imaging features' similarity to other lesions in MR imaging, such as intra-articular effusion and cystic tumors. Therefore, a Mask R-CNN multi-task learning model incorporating global-local attention modules was proposed to simultaneously implement the automatic recognition, detection, and segmentation of knee cysts in MRI. Firstly, the method utilized the channel attention mechanism to achieve the weighted fusion of global and local features of knee images, forming a feature map with multi-scale information. This map provided more accurate discriminative features for the model. Secondly, a multi-task uncertainty loss function was introduced, which employed homoskedasticity uncertainty to indicate the relative confidence of each task. It adaptively adjusted the task weights, and automatically searched for the optimal solution. Finally, the GrabCut method was utilized to generate masks based on pre-labeled bounding boxes to further construct knee MRI datasets, enhancing the quality and efficiency of data annotation. The experimental results demonstrated that the proposed method could accurately identify cystic knee lesions in MRI, with an average accuracy of 92.3% for detection and 92.8% for segmentation. These results outperformed other comparison methods in terms of effectiveness.

Key words: knee cysts, multi-task learning, attention mechanism, multi-scale feature fusion, Mask R-CNN

中图分类号: