图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1183-1190.DOI: 10.11996/JG.j.2095-302X.2023061183
收稿日期:
2023-06-25
接受日期:
2023-08-28
出版日期:
2023-12-31
发布日期:
2023-12-17
通讯作者:
何巍(1978-),女,教授,博士。主要研究方向为机器学习和医学图像处理。E-mail:作者简介:
张丽媛(1990-),女,副教授,博士。主要研究方向为计算机视觉和医学图像处理。E-mail:zhangliyuanzly@cust.edu.cn
基金资助:
ZHANG Li-yuan1(), ZHAO Hai-rong1, HE Wei1(
), TANG Xiong-feng2
Received:
2023-06-25
Accepted:
2023-08-28
Online:
2023-12-31
Published:
2023-12-17
Contact:
HE Wei (1978-), professor, Ph.D. Her main research interests cover machine learning and medical image analysis. About author:
ZHANG Li-yuan (1990-), associate professor, Ph.D. Her main research interests cover computer vision and medical image analysis.
E-mail:zhangliyuanzly@cust.edu.cn
Supported by:
摘要:
精准的膝关节囊肿检测是辅助多种膝关节疾病进行早期诊断和治疗的有效手段。然而,由于MR影像中膝关节囊肿与关节内积液和囊肿型肿瘤等其他病灶在影像特征上比较相似,导致检测任务难度较大。因此,提出了一种融合全局-局部注意模块的Mask R-CNN多任务学习模型,同时实现MR影像中膝关节囊肿的自动识别、检测与分割。首先,该方法利用通道注意力机制,将膝关节影像的全局特征和局部特征进行加权融合,形成具有多尺度信息的特征图,为模型提供更准确的判别特征。其次,引入多任务不确定性损失函数,采用同方差不确定性表明每个任务的相对置信度,对任务权重进行自适应调整,可以自动搜索最优解。最后,使用GrabCut方法基于预标记边界框生成掩码,进一步构建膝关节MR影像数据集,提升了数据标注的质量和效率。实验结果表明,该方法可以准确识别膝关节MR影像中的囊肿病灶,同时检测和分割平均精度分别达到了92.3%和92.8%,效果上优于其他对比方法。
中图分类号:
张丽媛, 赵海蓉, 何巍, 唐雄风. 融合全局-局部注意模块的Mask R-CNN膝关节囊肿检测方法[J]. 图学学报, 2023, 44(6): 1183-1190.
ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module[J]. Journal of Graphics, 2023, 44(6): 1183-1190.
参数 | 配置 |
---|---|
操作系统 | Centos Linux release 7.9.2009 |
CPU | Intel(R) Xeon(R) Gold 6338 CPU @2.00 GHz |
GPU | Nvidia Tesla A100 80 G |
编程语言 | Python 3.8.13 |
深度学习框架 | Tensorflow2.10.0 |
加速环境 | CUDA11.6+cudnn8.4.1 |
表1 实验环境配置
Table 1 The experimental environment configuration
参数 | 配置 |
---|---|
操作系统 | Centos Linux release 7.9.2009 |
CPU | Intel(R) Xeon(R) Gold 6338 CPU @2.00 GHz |
GPU | Nvidia Tesla A100 80 G |
编程语言 | Python 3.8.13 |
深度学习框架 | Tensorflow2.10.0 |
加速环境 | CUDA11.6+cudnn8.4.1 |
方法 | 检测任务 | 分割任务 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FPS | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
YOLOv3 | 46.702 | 49.3 | 75.6 | 55.9 | 64.6 | 63.2 | 75.0 | - | - | - | - | - | - |
YOLOv7 | 62.059 | 62.6 | 94.1 | 71.7 | 59.2 | 73.4 | 89.0 | - | - | - | - | - | - |
Centernet | 117.959 | 38.2 | 81.6 | 28.7 | 47.5 | 56.1 | 71.3 | - | - | - | - | - | - |
Faster R-CNN | 44.786 | 50.2 | 75.7 | 55.2 | 63.7 | 63.2 | 81.7 | - | - | - | - | - | - |
Cascade Mask R-CNN | 3.525 | 66.4 | 89.2 | 71.4 | 74.3 | 77.3 | 75.6 | 58.2 | 89.4 | 66.5 | 67.3 | 64.4 | 67.8 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83.0 | 59.8 | 92.8 | 68.8 | 68 | 69.3 | 74.9 |
表2 本文方法与其他先进方法的结果比较
Table 2 The results of this method are compared with other advanced methods
方法 | 检测任务 | 分割任务 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FPS | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
YOLOv3 | 46.702 | 49.3 | 75.6 | 55.9 | 64.6 | 63.2 | 75.0 | - | - | - | - | - | - |
YOLOv7 | 62.059 | 62.6 | 94.1 | 71.7 | 59.2 | 73.4 | 89.0 | - | - | - | - | - | - |
Centernet | 117.959 | 38.2 | 81.6 | 28.7 | 47.5 | 56.1 | 71.3 | - | - | - | - | - | - |
Faster R-CNN | 44.786 | 50.2 | 75.7 | 55.2 | 63.7 | 63.2 | 81.7 | - | - | - | - | - | - |
Cascade Mask R-CNN | 3.525 | 66.4 | 89.2 | 71.4 | 74.3 | 77.3 | 75.6 | 58.2 | 89.4 | 66.5 | 67.3 | 64.4 | 67.8 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83.0 | 59.8 | 92.8 | 68.8 | 68 | 69.3 | 74.9 |
图4 本文方法与其他模型的膝关节囊肿检测与分割结果比较
Fig. 4 Comparison between the knee cysts detection and segmentation based on our method and the original Mask R-CNN ((a) Ground Truth; (b) YOLOv3; (c) YOLOv7; (d) CenterNet; (e) Faster R-CNN; (f) Cascade Mask R-CNN; (g) Mask R-CNN; (h) Ours)
方法 | FPS | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | ||
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83 | 59.8 | 92.8 | 69.8 | 68 | 69.3 | 74.9 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Mask R-CNN + GLA | 5.885 | 66.4 | 90.7 | 78.9 | 75.9 | 78.8 | 77.8 | 57.6 | 88.3 | 65 | 64.7 | 68.5 | 73.3 |
Mask R-CNN + MUL | 7.884 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
表3 消融实验结果
Table 3 Results of ablation experiments
方法 | FPS | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | ||
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83 | 59.8 | 92.8 | 69.8 | 68 | 69.3 | 74.9 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Mask R-CNN + GLA | 5.885 | 66.4 | 90.7 | 78.9 | 75.9 | 78.8 | 77.8 | 57.6 | 88.3 | 65 | 64.7 | 68.5 | 73.3 |
Mask R-CNN + MUL | 7.884 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
方法 | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
多任务不确定性损失 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64.0 | 67.2 | 72.4 | |
65.1 | 88.1 | 77.4 | 74.3 | 80.1 | 81.9 | 55.3 | 88.3 | 63.6 | 65.5 | 66.8 | 71.9 | |
65.8 | 89.7 | 78.1 | 74.4 | 80.6 | 79.5 | 55.9 | 90.3 | 64 | 64.9 | 68.8 | 70.5 | |
65.3 | 89.1 | 75.4 | 75.3 | 80.9 | 79.0 | 55.1 | 88.7 | 62.1 | 65.8 | 67.6 | 67.1 | |
67.4 | 89.8 | 79.5 | 76.3 | 80.1 | 81.9 | 57.0 | 90.0 | 66 | 65.4 | 68.6 | 72.4 | |
67.2 | 89.9 | 79.1 | 75.8 | 79.8 | 81.1 | 57.4 | 90.4 | 68.5 | 65.7 | 68.5 | 71.0 | |
64.8 | 88.4 | 77.6 | 74.9 | 80.3 | 82.9 | 55.7 | 89.8 | 63.7 | 65.6 | 67.8 | 71.0 | |
65.0 | 88.4 | 75.3 | 73.9 | 80.3 | 82.9 | 55.9 | 89.8 | 64.8 | 64.4 | 67.6 | 70.0 |
表4 使用多任务不确定性损失和网格搜索设置损失权重的实验结果比较
Table 4 Comparison of experimental results using multi-task uncertainty loss and using grid search to set loss weights
方法 | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
多任务不确定性损失 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64.0 | 67.2 | 72.4 | |
65.1 | 88.1 | 77.4 | 74.3 | 80.1 | 81.9 | 55.3 | 88.3 | 63.6 | 65.5 | 66.8 | 71.9 | |
65.8 | 89.7 | 78.1 | 74.4 | 80.6 | 79.5 | 55.9 | 90.3 | 64 | 64.9 | 68.8 | 70.5 | |
65.3 | 89.1 | 75.4 | 75.3 | 80.9 | 79.0 | 55.1 | 88.7 | 62.1 | 65.8 | 67.6 | 67.1 | |
67.4 | 89.8 | 79.5 | 76.3 | 80.1 | 81.9 | 57.0 | 90.0 | 66 | 65.4 | 68.6 | 72.4 | |
67.2 | 89.9 | 79.1 | 75.8 | 79.8 | 81.1 | 57.4 | 90.4 | 68.5 | 65.7 | 68.5 | 71.0 | |
64.8 | 88.4 | 77.6 | 74.9 | 80.3 | 82.9 | 55.7 | 89.8 | 63.7 | 65.6 | 67.8 | 71.0 | |
65.0 | 88.4 | 75.3 | 73.9 | 80.3 | 82.9 | 55.9 | 89.8 | 64.8 | 64.4 | 67.6 | 70.0 |
[1] |
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis and Cartilage, 2022, 30(4): 516-534.
DOI URL |
[2] | PERRY T A, O'NEILL T W, TOLSTYKH I, et al. Magnetic resonance imaging-assessed subchondral cysts and incident knee pain and knee osteoarthritis: data from the multicenter osteoarthritis study[J]. Arthritis & Rheumatology, 2022, 74(1): 60-69. |
[3] | 艾阳平. 100例膝关节囊肿的高频超声与MRI分析[J]. 影像研究与医学应用, 2021, 5(10): 107-108. |
AI Y P. High frequency ultrasound and MRI analysis of 100 cases of knee joint cyst[J]. Journal of Imaging Research and Medical Applications, 2021, 5(10): 107-108 (in Chinese). | |
[4] |
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis and Cartilage, 2022, 30(4): 516-534.
DOI URL |
[5] |
DING Y, ACOSTA R, ENGUIX V, et al. Using deep convolutional neural networks for neonatal brain image segmentation[J]. Frontiers in Neuroscience, 2020, 14: 1-10.
DOI URL |
[6] | MEHTA D, GAL Y, BOWLING A, et al. Out-of-distribution detection for long-tailed and fine-grained skin lesion images[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 732-742. |
[7] |
KHAN S, AZAM B, YAO Y C, et al. Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI[J]. Computer Methods and Programs in Biomedicine, 2022, 222: 106963.
DOI URL |
[8] |
AWAN M J, RAHIM M S M, SALIM N, et al. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach[J]. Diagnostics, 2021, 11(1): 105.
DOI URL |
[9] | HUO X Z, SUN G, TIAN S W, et al. HiFuse: hierarchical multi-scale feature fusion network for medical image classification[EB/OL]. (2022-09-21) [2023-01-18]. https://arxiv.org/abs/2209.10218.pdf. |
[10] |
LIU S S, WANG H L, LI Y, et al. AHU-MultiNet: adaptive loss balancing based on homoscedastic uncertainty in multi-task medical image segmentation network[J]. Computers in Biology and Medicine, 2022, 150: 106157.
DOI URL |
[11] | HAQUE A, IMRAN A A Z, WANG A, et al. Generalized multi-task learning from substantially unlabeled multi-source medical image data[EB/OL]. (2021-10-25) [2023-01-18]. https://arxiv.org/abs/2110.13185.pdf. |
[12] |
TIAN Y N, YANG G D, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
DOI URL |
[13] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[14] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-16) [2023-01-18]. https://arxiv.org/abs/1904.07850.pdf. |
[15] |
CHEN Y H, WANG H R, LI W, et al. Scale-aware domain adaptive faster R-CNN[J]. International Journal of Computer Vision, 2021, 129(7): 2223-2243.
DOI |
[16] |
XU B B, WANG W S, FALZON G, et al. Automated cattle counting using Mask R-CNN in quadcopter vision system[J]. Computers and Electronics in Agriculture, 2020, 171: 105300.
DOI URL |
[17] |
CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.
DOI URL |
[18] | 钱春红, 沈海林, 李振凯. 探讨膝关节囊性病变的磁共振影像(MRI)表现及其诊断价值[J]. 影像研究与医学应用, 2019, 3(18): 54-55. |
QIAN C H, SHEN H L, LI Z K. To investigate the magnetic resonance imaging (MRI) manifestations of cystic lesions of knee joint and its diagnostic value[J]. Journal of Imaging Research and Medical Applications, 2019, 3(18): 54-55 (in Chinese). | |
[19] | CHEN L C, YANG Y, WANG J, et al. Attention to scale: scale-aware semantic image segmentation[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3640-3649. |
[20] |
LI L H, TANG S, ZHANG Y D, et al. GLA: global-local attention for image description[J]. IEEE Transactions on Multimedia, 2018, 20(3): 726-737.
DOI URL |
[21] | SONG C H, HAN H J, AVRITHIS Y. All the attention You need: global-local, spatial-channel attention for image retrieval[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 2754-2763. |
[22] | KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7482-7491. |
[23] |
MOHAJER B, DOLATSHAHI M, MORADI K, et al. Role of thigh muscle changes in knee osteoarthritis outcomes: osteoarthritis initiative data[J]. Radiology, 2022, 305(1): 169-178.
DOI URL |
[24] |
WANG Z B, LV Y K, WU R L, et al. Review of GrabCut in image processing[J]. Mathematics, 2023, 11(8): 1965.
DOI URL |
[1] | 郭宗洋, 刘立东, 蒋东华, 刘子翔, 朱熟康, 陈京华 .
基于语义引导神经网络的人体动作识别算法
[J]. 图学学报, 2024, 45(1): 26-34. |
[2] | 翟永杰, 赵晓瑜, 王璐瑶, 王亚茹, 宋晓轲, 朱浩硕.
IDD-YOLOv7:一种用于输电线路绝缘子多缺陷的轻量化检测方法
[J]. 图学学报, 2024, 45(1): 90-101. |
[3] | 古天骏, 熊苏雅, 林晓.
基于SASGAN的戏剧脸谱多样化生成
[J]. 图学学报, 2024, 45(1): 102-111. |
[4] | 崔克彬, 焦静颐 .
基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法
[J]. 图学学报, 2024, 45(1): 112-125. |
[5] | 魏陈浩, 杨睿, 刘振丙, 蓝如师, 孙希延, 罗笑南. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111. |
[6] | 丁建川, 肖金桐, 赵可新, 贾冬青, 崔炳德, 杨鑫. 基于脉冲神经网络的复杂场景导航避障算法[J]. 图学学报, 2023, 44(6): 1121-1129. |
[7] | 张驰, 张效娟, 赵洋, 杨帆. 基于调色板的半交互式低照度唐卡图像增强[J]. 图学学报, 2023, 44(6): 1202-1211. |
[8] | 杨陈成, 董秀成, 侯兵, 张党成, 向贤明, 冯琪茗. 基于参考的Transformer纹理迁移深度图像超分辨率重建[J]. 图学学报, 2023, 44(5): 861-867. |
[9] | 宋焕生, 文雅, 孙士杰, 宋翔宇, 张朝阳, 李旭. 基于改进教师学生网络的隧道火灾检测[J]. 图学学报, 2023, 44(5): 978-987. |
[10] | 李利霞, 王鑫, 王军, 张又元. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666. |
[11] | 李鑫, 普园媛, 赵征鹏, 徐丹, 钱文华. 内容语义和风格特征匹配一致的艺术风格迁移[J]. 图学学报, 2023, 44(4): 699-709. |
[12] | 余伟群, 刘佳涛, 张亚萍. 融合注意力的拉普拉斯金字塔单目深度估计[J]. 图学学报, 2023, 44(4): 728-738. |
[13] | 胡欣, 周运强, 肖剑, 杨杰. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437. |
[14] | 郝鹏飞, 刘立群, 顾任远. YOLO-RD-Apple果园异源图像遮挡果实检测模型[J]. 图学学报, 2023, 44(3): 456-464. |
[15] | 罗文宇, 傅明月. 基于YoloX-ECA模型的非法野泳野钓现场监测技术[J]. 图学学报, 2023, 44(3): 465-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||