[1] |
刘畅, 霍宇驰, 张严辞, 等. 移动在线实时绘制技术研究综述[J]. 中国图象图形学报, 2022, 27(6): 1877-1897.
|
|
LIU C, HUO Y C, ZHANG Y C, et al. A review of real-time rendering technology based on mobile internet platforms[J]. Journal of Image and Graphics, 2022, 27(6): 1877-1897. (in Chinese)
|
[2] |
GLASSNER A S. An introduction to ray tracing[M]. San Francisco: Morgan Kaufmann Pub., 1989: 46-53.
|
[3] |
LAFORTUNE E P, WILLEMS Y D. Bi-directional path tracing[EB/OL]. [2024-05-03]. http://www.lafortune.eu/publications/Alvor.html.
|
[4] |
GREGER G, SHIRLEY P, HUBBARD P M, et al. The irradiance volume[J]. IEEE Computer Graphics and Applications, 1998, 18(2): 32-43.
|
[5] |
MAJERCIK Z, GUERTIN J P, NOWROUZEZAHRAI D, et al. Dynamic diffuse global illumination with ray-traced irradiance fields[J]. Journal of Computer Graphics Techniques, 2019, 8(2): 1-30.
|
[6] |
MACLNTYRE B, SMITH T F. Thoughts on the future of WebXR and the immersive web[C]// 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct. New York: IEEE Press, 2018: 338-342.
|
[7] |
SIRIWARDHANA Y, PORAMBAGE P, LIYANAGE M, et al. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1160-1192.
|
[8] |
MINOPOULOS G, PSANNIS K E. Opportunities and challenges of tangible XR applications for 5G networks and beyond[J]. IEEE Consumer Electronics Magazine, 2023, 12(6): 9-19.
|
[9] |
CARRASCOSA M, BELLALTA B. Cloud-gaming: analysis of Google stadia traffic[J]. Computer Communications, 2022, 188: 99-116.
|
[10] |
HOU X S, DEY S, ZHANG J Z, et al. Predictive adaptive streaming to enable mobile 360-degree and VR experiences[J]. IEEE Transactions on Multimedia, 2021, 23: 716-731.
|
[11] |
LIU X, VLACHOU C, QIAN F, et al. Firefly: untethered multi-user VR for commodity mobile devices[C]// 2020 USENIX Conference on USENIX Annual Technical Conference. Berkeley: USENIX Association, 2020: 65.
|
[12] |
MENG J Y, PAUL S, HU Y C. Coterie: exploiting frame similarity to enable high-quality multiplayer VR on commodity mobile devices[C]// The 25th International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2020: 923-937.
|
[13] |
LAGHARI A A, HE H, MEMON K A, et al. Quality of experience (QoE) in cloud gaming models: a review[J]. Multiagent and Grid Systems, 2019, 15(3): 289-304.
|
[14] |
BHOJAN A, NG S P, NG J, et al. CloudyGame: enabling cloud gaming on the edge with dynamic asset streaming and shared game instances[J]. Multimedia Tools and Applications, 2020, 79(43): 32503-32523.
|
[15] |
LI Y S, ZHAO C J, TANG X Y, et al. Towards minimizing resource usage with QoS guarantee in cloud gaming[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(2): 426-440.
|
[16] |
JAYA I, LI Y S, CAI W T. Improving scalability, sustainability and availability via workload distribution in edge-cloud gaming[C]// The 30th ACM International Conference on Multimedia. New York: ACM, 2022: 2987-2995.
|
[17] |
LIU C, SONG H L, FANG T, et al. Web-cloud collaborative mobile online 3D rendering system[J]. Security and Communication Networks, 2022, 2022(1): 4748946.
|
[18] |
CRASSIN C, LUEBKE D, MARA M, et al. CloudLight: a system for amortizing indirect lighting in real-time rendering[J]. Journal of Computer Graphics Techniques (JCGT), 2015, 4(4): 1-27.
|
[19] |
LIU C, OOI W T, JIA J Y, et al. Cloud baking: Collaborative scene illumination for dynamic Web3D scenes[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2018, 14(3s): 59.
|
[20] |
JIANG W, GU J W. Video stitching with spatial-temporal content-preserving warping[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2015: 42-48.
|
[21] |
BUGEJA K, DEBATTISTA K, SPINA S. An asynchronous method for cloud-based rendering[J]. The Visual Computer, 2019, 35(12): 1827-1840.
|
[22] |
邵威, 刘畅, 贾金原. 基于光照贴图的Web3D全局光照协作式云渲染系统[J]. 系统仿真学报, 2020, 32(4): 649-659.
DOI
|
|
SHAO W, LIU C, JIA J Y. Lightmap-based GI collaborative rendering system for Web3D application[J]. Journal of System Simulation, 2020, 32(4): 649-659. (in Chinese)
DOI
|
[23] |
STENGEL M, MAJERCIK Z, BOUDAOUD B, et al. A distributed, decoupled system for losslessly streaming dynamic light probes to thin clients[C]// The 12th ACM Multimedia Systems Conference. New York: ACM, 2021: 159-172.
|
[24] |
MUELLER J H, VOGLREITER P, DOKTER M, et al. Shading atlas streaming[J]. ACM Transactions on Graphics, 2018, 37(6): 199.
|
[25] |
陈主昕, 杨沁七, 陈瑞, 等. 基于虚拟光源的实时半透明材质渲染[J]. 图学学报, 2022, 43(4): 707-714.
|
|
CHEN Z X, YANG Q Q, CHEN R, et al. Virtual light-based translucent material rendering in real-time[J]. Journal of Graphics, 2022, 43(4): 707-714. (in Chinese)
DOI
|
[26] |
LAMBERS M. Survey of cube mapping methods in interactive computer graphics[J]. The Visual Computer, 2020, 36(5): 1043-1051.
|
[27] |
ENGELHARDT T, DACHSBACHER C. Octahedron environment maps[EB/OL]. [2024-05-03]. https://dblp.org/db/conf/vmv/vmv2008.html#EngelhardtD08.
|
[28] |
SEELEY R T. Spherical harmonics[J]. The American Mathematical Monthly, 1966, 73(4P2): 115-121.
|
[29] |
MCGUIRE M, MARA M, NOWROUZEZAHRAI D, et al. Real-time global illumination using precomputed light field probes[C]// The 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2017: 2.
|
[30] |
MAJERCIK Z, MÜLLER T, KELLER A, et al. Dynamic diffuse global illumination resampling[C]// ACM SIGGRAPH 2021 Talks. New York: ACM, 2021: 24.
|
[31] |
PHARR M, JAKOB W, HUMPHREYS G. Physically based rendering: From theory to implementation[M]. Cambridge: The MIT Press, 2023: 10-14.
|
[32] |
DONNELLY W, LAURITZEN A. Variance shadow maps[C]// The 2006 Symposium on Interactive 3D Graphics and Games. New York: ACM, 2006: 161-165.
|