图学学报 ›› 2025, Vol. 46 ›› Issue (2): 425-436.DOI: 10.11996/JG.j.2095-302X.2025020425
刘圣军1(), 陶珊珊1, 王海波1, 李钦松2, 刘新儒1(
)
收稿日期:
2024-08-22
接受日期:
2024-10-25
出版日期:
2025-04-30
发布日期:
2025-04-24
通讯作者:
刘新儒(1982-),男,副教授,博士。主要研究方向为几何造型、数值建模、数据分析与智能算法。E-mail:liuxinru@csu.edu.cn第一作者:
刘圣军(1979-),男,教授,博士。主要研究方向为几何计算与分析、数字图像处理、智能算法及应用。E-mail:shjliu.cg@csu.edu.cn
基金资助:
LIU Shengjun1(), TAO Shanshan1, WANG Haibo1, LI Qinsong2, LIU Xinru1(
)
Received:
2024-08-22
Accepted:
2024-10-25
Published:
2025-04-30
Online:
2025-04-24
First author:
LIU Shengjun (1979-), professor, Ph.D. His main research interests cover geometric calculation and analysis, digital image processing, intelligent algorithms, and applications. E-mail:shjliu.cg@csu.edu.cn
Supported by:
摘要:
从三角网格数据重建CAD建模过程是逆向工程中的研究重点之一,高效、高精的曲面重建具有重要的工程价值。针对由直线段和圆弧段组成的平面路径扫掠生成的三角网格表示曲面,提出了基于轮廓和路径曲线自动提取的扫掠过程重建,实现扫掠曲面的高精度重建。首先,基于统一三角网格模型曲率矢量场自动获得初始路径,再利用高斯映射迭代和配准拟合的方法生成了扫掠的轮廓曲线;然后,逆向计算扫掠路径的离散有序点集,通过引入切空间表示方法来识别路径中的直线段和圆弧段,并基于相切几何约束条件建立了拟合的优化模型,对初始路径进一步优化;最后,由计算得到的轮廓曲线和路径曲线执行扫掠操作,以获得重建的扫掠曲面。实验结果表明,该方法实现了自动提取轮廓曲线和路径曲线,进而重建扫掠模型的建模过程,减少了繁琐的人工交互,提取的轮廓和路径有效地避免了离散误差累积,使得最终重建的扫掠曲面精度更高,且适用于有噪声的数据和存在缺失数据的扫掠曲面。
中图分类号:
刘圣军, 陶珊珊, 王海波, 李钦松, 刘新儒. 基于平面路径的扫掠面高精度重建[J]. 图学学报, 2025, 46(2): 425-436.
LIU Shengjun, TAO Shanshan, WANG Haibo, LI Qinsong, LIU Xinru. High-precision reconstruction of swept surfaces with a planar path[J]. Journal of Graphics, 2025, 46(2): 425-436.
图2 统一曲率场((a)原始最小曲率场;(b)区分不同类型曲率点;(c)强曲率点对齐;(d)平滑弱曲率区域;(e)初始路径跟踪结果)
Fig. 2 Unify curvature field ((a) Original minimum curvature field; (b) Distinguish different types of curvature points; (c) Align strong curvature points; (d) Smooth the area with weak curvature points; (e) Initial tracking path result)
图3 初始路径跟踪规则((a) pi+1落在顶点或边缘;(b) pi+1落在三角片内部)
Fig. 3 Rules for initial path tracking ((a) pi+1 falls at the apex or edge; (b) pi+1 falls inside the triangle)
图7 准均匀非有理三次B样条逼近结果((a)~(c)控制点数分别为6,16和64的准均匀非有理三次B样条逼近结果;(d)准均匀非有理三次B样条逼近的曲率梳(64个控制点);(e)直线-圆弧拟合的曲率梳)
Fig. 7 Quasi uniform non rational cubic B-spline approximation results ((a)~(c) Quasi uniform non rational cubic B-Spline approximation results with 6, 16, and 64 control points, respectively; (d) Curvature comb for quasi uniform non rational cubic B-Spline approximation (64 control points); (e) Curvature comb for line-arc fitting)
图9 切空间表示方法检测直线-圆弧段示例图((a)切空间表示下的中点折线段;(b)路径分段结果)
Fig. 9 Detection of line arc segments using tangent space representation method ((a) The midpoint line segment in the tangent space representation; (b) Path segmentation results)
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.054 5 | 0.009 4 | 0.013 2 |
本文方法 | 0.014 7 | 0.004 0 | 0.006 9 |
表1 轮廓曲线误差对比
Table 1 Comparison of profile curve errors
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.054 5 | 0.009 4 | 0.013 2 |
本文方法 | 0.014 7 | 0.004 0 | 0.006 9 |
图11 不同方法生成的路径与真实路径的比较以及对应的扫掠结果对比((a)~(c)不同方法拟合路径的结果;(d)~(f)真实轮廓沿不同拟合路径扫掠的曲面)
Fig. 11 Comparison of paths generated by different methods with the real path and corresponding sweeping results ((a)~(c) The results of fitting paths using different methods; (d)~(f) The swept surfaces of the true contour along different fitting path)
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.099 9 | 0.038 6 | 0.041 6 |
B样条拟合 | 0.035 0 | 0.017 7 | 0.015 7 |
直线-圆弧段拟合 | 0.031 0 | 0.006 8 | 0.009 0 |
表2 路径曲线误差对比
Table 2 Comparison of path curve errors
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.099 9 | 0.038 6 | 0.041 6 |
B样条拟合 | 0.035 0 | 0.017 7 | 0.015 7 |
直线-圆弧段拟合 | 0.031 0 | 0.006 8 | 0.009 0 |
模型 | 方法 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
① | 文献[10] | 0.001 84 | 0.002 99 |
本文方法 | 0.000 70 | 0.000 88 | |
② | 文献[10] | 0.000 37 | 0.000 60 |
本文方法 | 0.000 11 | 0.000 15 | |
③ | 文献[10] | 0.000 20 | 0.0002 96 |
本文方法 | 0.000 16 | 0.000 18 | |
④ | 文献[10] | 0.000 88 | 0.001 19 |
本文方法 | 0.000 32 | 0.000 39 |
表3 曲面重建误差对比
Table 3 Comparison of surface reconstruction errors
模型 | 方法 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
① | 文献[10] | 0.001 84 | 0.002 99 |
本文方法 | 0.000 70 | 0.000 88 | |
② | 文献[10] | 0.000 37 | 0.000 60 |
本文方法 | 0.000 11 | 0.000 15 | |
③ | 文献[10] | 0.000 20 | 0.0002 96 |
本文方法 | 0.000 16 | 0.000 18 | |
④ | 文献[10] | 0.000 88 | 0.001 19 |
本文方法 | 0.000 32 | 0.000 39 |
图12 模型①轮廓、路径提取结果及曲面重建误差((a)原始三角网格;(b)轮廓侧视图;(c)路径俯视图;(d)文献[10];(e)本文方法)
Fig. 12 Profile, path extraction results, and surface reconstruction errors of model ① ((a) Original triangular mesh; (b) Side view of the profile; (c) Top view of the path; (d) Reference[10]; (e) Ours)
图13 模型②轮廓、路径提取结果及曲面重建误差((a)原始三角网格;(b)轮廓侧视图;(c)路径俯视图;(d)文献[10];(e)本文方法)
Fig. 13 Profile, path extraction results, and surface reconstruction errors of model ② ((a) Original triangular mesh; (b) Side view of the profile; (c) Top view of the path; (d) Reference [10]; (e) Ours)
图14 模型③轮廓、路径提取结果及曲面重建误差((a)原始三角网格;(b)轮廓侧视图;(c)路径俯视图;(d)文献[10];(e)本文方法)
Fig. 14 Profile, path extraction results, and surface reconstruction errors of model ③ ((a) Original triangular mesh; (b) Side view of the profile; (c) Top view of the path; (d) Reference [10]; (e) Ours)
图15 模型④轮廓、路径提取结果及曲面重建误差((a)文献[10];(b)本文方法)
Fig. 15 Profile, path extraction results, and surface reconstruction errors of model ④ ((a) Reference [10]; (b) Ours)
噪声标准差 | 误差 | |
---|---|---|
MAE | RMSE | |
Std=1.00 | - | - |
Std=0.10 | 0.000 523 | 0.000 62 |
Std=0.01 | 0.000 356 | 0.000 43 |
表4 噪声模型重建误差
Table 4 Reconstruction error of noisy models
噪声标准差 | 误差 | |
---|---|---|
MAE | RMSE | |
Std=1.00 | - | - |
Std=0.10 | 0.000 523 | 0.000 62 |
Std=0.01 | 0.000 356 | 0.000 43 |
模型 | 对比 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
部分缺角 | 缺失数据 | 0.000 335 | 0.000 414 |
模型④ | 0.000 344 | 0.000 420 | |
沿路径缺失 | 缺失数据 | 0.000 403 | 0.000 490 |
模型④ | 0.000 402 | 0.000 489 |
表5 数据缺失模型重建误差
Table 5 Reconstruction error of data missing models
模型 | 对比 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
部分缺角 | 缺失数据 | 0.000 335 | 0.000 414 |
模型④ | 0.000 344 | 0.000 420 | |
沿路径缺失 | 缺失数据 | 0.000 403 | 0.000 490 |
模型④ | 0.000 402 | 0.000 489 |
[1] | 邹强. 浅谈实体建模: 历史、现状与未来[J]. 图学学报, 2022, 43(6): 987-1001. |
ZOU Q. A note on solid modeling: history, state of the art, future[J]. Journal of Graphics, 2022, 43(6): 987-1001 (in Chinese). | |
[2] | BUONAMICI F, CARFAGNI M, FURFERI R, et al. Reverse engineering modeling methods and tools: a survey[J]. Computer-Aided Design and Applications, 2018, 15(3): 443-464. |
[3] | YAN C Q, WAN W Q, HUANG K T, et al. A reconstruction strategy based on CSC registration for turbine blades repairing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101835. |
[4] | 孙修恩, 张典华, 孙昕萍. 三维数字重建在青铜器修复中的应用研究[J]. 图学学报, 2014, 35(6): 912-917. |
SUN X E, ZHANG D H, SUN X P. Application of 3D digital reconstruction in the repair of bronze ware[J]. Journal of Graphics, 2014, 35(6): 912-917 (in Chinese). | |
[5] | KUMAR A, JAIN P K, PATHAK P M. Reverse engineering in product manufacturing: an overview[M]// KATALINICB, TEKICZ. DAAAM International Scientific Book. Vienna: DAAAM International, 2013: 665-678. |
[6] | FAYOLLE P A, FRIEDRICH M. A survey of methods for converting unstructured data to CSG models[J]. Computer-Aided Design, 2024, 168: 103655. |
[7] | YOU L H, YANG X S, PACHULSKI M, et al. Boundary constrained swept surfaces for modelling and animation[J]. Computer Graphics Forum, 2007, 26(3): 313-322. |
[8] | UENG W D, LAI J Y. A sweep-surface fitting algorithm for reverse engineering[J]. Computers in Industry, 1998, 35(3): 261-273. |
[9] | GOYAL M, MURUGAPPAN S, PIYA C, et al. Towards locally and globally shape-aware reverse 3D modeling[J]. Computer-Aided Design, 2012, 44(6): 537-553. |
[10] | KOVÁCS I, VÁRADY T, CRIPPS R. Reconstructing swept surfaces from measured data[J]. The Mathematics of Surfaces XIV, Cripps R. et al. IMA, 2013: 327-344. |
[11] | VARADY T, MARTIN R. Reverse engineering[M]// FARING, HOSCHEKJ, KIMM S. Handbook of Computer Aided Geometric Design. Amsterdam: North Holland, 2002: 651-681. |
[12] | ANDREWS J, SÉQUIN C H. Type-constrained direct fitting of quadric surfaces[J]. Computer-Aided Design and Applications, 2014, 11(1): 107-119. |
[13] | VÁRADY T, MARTIN R R, COX J. Reverse engineering of geometric models-an introduction[J]. Computer-Aided Design, 1997, 29(4): 255-268. |
[14] | BENKO P, KÓS G, VÁRADY T, et al. Constrained fitting in reverse engineering[J]. Computer Aided Geometric Design, 2002, 19(3): 173-205. |
[15] | PORRILL J. Optimal combination and constraints for geometrical sensor data[J]. The International Journal of Robotics Research, 1988, 7(6): 66-77. |
[16] | DE GEETER J, VAN BRUSSEL H, DE SCHUTTER J, et al. A smoothly constrained Kalman filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1171-1177. |
[17] | WERGHI N, FISHER R, ROBERTSON C, et al. Object reconstruction by incorporating geometric constraints in reverse engineering[J]. Computer-Aided Design, 1999, 31(6): 363-399. |
[18] | LI Y Y, WU X K, CHRYSATHOU Y, et al. GlobFit: consistently fitting primitives by discovering global relations[C]// ACM SIGGRAPH 2011 Papers. New York: ACM, 2011: 52. |
[19] | WANG J, GU D X, YU Z Y, et al. A framework for 3D model reconstruction in reverse engineering[J]. Computers & Industrial Engineering, 2012, 63(4): 1189-1200. |
[20] | PROTOPSALTIS A I, FUDOS I. A feature-based approach to re-engineering CAD models from cross sections[J]. Computer- Aided Design and Applications, 2010, 7(5): 739-757. |
[21] | WANG J, GU D X, GAO Z H, et al. Feature-based solid model reconstruction[J]. Journal of Computing and Information Science in Engineering, 2013, 13(1): 011004. |
[22] | KE Y L, FAN S Q, ZHU W D, et al. Feature-based reverse modeling strategies[J]. Computer-Aided Design, 2006, 38(5): 485-506. |
[23] | WANG X X, WANG J L, PAN W F. A sketch-based query interface for 3D CAD model retrieval[C]// 2014 2nd International Conference on Systems and Informatics. New York: IEEE Press, 2014: 881-885. |
[24] | 张伟, 赖喜德, 宋威, 等. 基于截面特征约束的涡轮叶片重构技术[J]. 机械强度, 2014, 36(4): 578-582. |
ZHANG W, LAI X D, SONG W, et al. Reconstruction technique for turbine blade based on constraint of sectional feature[J]. Journal of Mechanical Strength, 2014, 36(4): 578-582 (in Chinese). | |
[25] | BÉNIÈRE R, SUBSOL G, GESQUIÈRE G, et al. A comprehensive process of reverse engineering from 3D meshes to CAD models[J]. Computer-Aided Design, 2013, 45(11): 1382-1393. |
[26] | SARFRAZ M. Computer-aided reverse engineering using simulated evolution on NURBS[J]. Virtual and Physical Prototyping, 2006, 1(4): 243-257. |
[27] | BERGER M, TAGLIASACCHI A, SEVERSKY L M, et al. State of the art in surface reconstruction from point clouds[R]. Strasbourg: The Eurographics Association, 2014. |
[28] | TSAI Y C, HUANG C Y, LIN K Y, et al. Development of automatic surface reconstruction technique in reverse engineering[J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(1): 152-167. |
[29] | BLOOMENTHAL M. Approximation of sweep surfaces by tensor product B-splines[R]. Salt Lake City: University of Utah, 1988. |
[30] | BLOOMENTHAL M, RIESENFELD R F. Approximation of sweep surfaces by tensor product NURBS[C]// Curves and Surfaces in Computer Vision and Graphics II. Bellingham: SPIE, 1992: 132-144. |
[31] | BARONE S. Gear geometric design by B-spline curve fitting and sweep surface modelling[J]. Engineering with Computers, 2001, 17(1): 66-74. |
[32] | BARTOŇ M, POTTMANN H, WALLNER J. Detection and reconstruction of freeform sweeps[J]. Computer Graphics Forum, 2014, 33(2): 23-32. |
[33] | BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. |
[34] | PIEGL L, TILLER W. The NURBS book[M]. Berlin:Springer, 1997. |
[35] | COHEN-STEINER D, MORVAN J M. Restricted Delaunay triangulations and normal cycle[C]// The 19th Annual Symposium on Computational Geometry. New York: ACM, 2003: 312-321. |
[36] | 施法中. 计算机辅助几何设计与非均匀有理B样条(修订版)[M]. 北京: 高等教育出版社, 2013: 378-421. |
SHI FAZHONG. CAGD & NURBS (revised version)[M]. Beijing: Higher Education Press, 2013: 378-421 (in Chinese). | |
[37] | AU C K, YUEN M M F. Feature-based reverse engineering of mannequin for garment design[J]. Computer-Aided Design, 1999, 31(12): 751-759. |
[38] | NGUYEN T P, DEBLED-RENNESSON I. Arc segmentation in linear time[C]// The 14th International Conference on Computer Analysis of Images and Patterns. Cham: Springer, 2011: 84-92. |
[39] | PRATT V. Direct least-squares fitting of algebraic surfaces[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 145-152. |
[40] | KRAFT D. A software package for sequential quadratic programming[J]. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988. |
[41] | TAUBIN G. A signal processing approach to fair surface design[C]// The 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 351-358. |
[1] | 谭坤, 王旭鹏, 赵嘉鑫, 黄昱喆, 李旭, 李嘉琛. 基于下肢生物力学特性的膝关节变刚度护具设计[J]. 图学学报, 2024, 45(5): 1084-1095. |
[2] | 夏红梅, 甄文斌 . 基于逆向反求的《机器 3D 测绘》 实践训练方法研究[J]. 图学学报, 2018, 39(5): 1004-1008. |
[3] | 刘 骊, 付晓东, 王若梅, 罗笑南. 部件化构建的三维服装快速编辑方法[J]. 图学学报, 2016, 37(2): 206-213. |
[4] | 蔡 恒, 张 慧. 带自由曲面的三视图重建算法研究[J]. 图学学报, 2015, 36(2): 205-214. |
[5] | 丁建完, 侯文洁, 熊 涛. 雅克比矩阵近似更新的三维装配约束求解研究[J]. 图学学报, 2014, 35(3): 368-373. |
[6] | 白代萍, 李艳芹, 丁 静, 杨 勇, 樊 跃. 层次聚类法在逆向工程中的应用研究[J]. 图学学报, 2014, 35(3): 402-407. |
[7] | 张 伟. 逼近散乱点云数据的三角形网格精确剖分[J]. 图学学报, 2014, 35(2): 188-194. |
[8] | 黄学良, 李 娜, 陈立平. 三维装配几何约束组合的分类求解策略[J]. 图学学报, 2014, 35(2): 236-242. |
[9] | 陈慧群, 黎景炎. 基于变形网格法的高密点云曲面重建[J]. 图学学报, 2011, 32(2): 64-67. |
[10] | 吴雪梅, 文 珈, 于广滨, 李瑰贤, 单德彬. 基于三坐标测量数据的点云曲面重构[J]. 图学学报, 2011, 32(2): 68-72. |
[11] | 张杏莉, 胡运红, 卢新明. 一种新的几何约束系统参数取值范围的计算方法[J]. 图学学报, 2010, 31(6): 85-92. |
[12] | 邵正伟, 席 平. 基于八叉树编码的点云数据精简方法[J]. 图学学报, 2010, 31(4): 73-76. |
[13] | 赵 辰, 林 强, 吴 娟, 罗秋科. 几何约束求解的去并拟合方法[J]. 图学学报, 2010, 31(3): 40-46. |
[14] | 苗兰芳, 周廷方, 彭群生. 稠密采样点模型的快速隐式曲面重建[J]. 图学学报, 2010, 31(2): 84-91. |
[15] | 王晓明, 刘吉晓. 一种大规模散乱数据自适应压缩与曲面重建方法[J]. 图学学报, 2010, 31(2): 92-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||