欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (3): 542-550.DOI: 10.11996/JG.j.2095-302X.2025030542

• 图像处理与计算机视觉 • 上一篇    下一篇

面向RGB-D数据的特征线提取和表示算法

刘鑫(), 李洋, 冯胜杰, 吴晓群()   

  1. 北京工商大学计算机与人工智能学院,北京 100048
  • 收稿日期:2024-07-03 接受日期:2025-01-06 出版日期:2025-06-30 发布日期:2025-06-13
  • 通讯作者:吴晓群(1984-),女,教授,博士。主要研究方向为计算机图形学、数字几何处理和图像处理。E-mail:wuxiaoqun@btbu.edu.cn
  • 第一作者:刘鑫(2000-),男,硕士研究生。主要研究方向为计算机图形学、数字几何处理和图像处理。E-mail:2230702022@st.btbu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(62272014)

Line extraction and representation algorithm for RGB-D data

LIU Xin(), LI Yang, FENG Shengjie, WU Xiaoqun()   

  1. School of Computing and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
  • Received:2024-07-03 Accepted:2025-01-06 Published:2025-06-30 Online:2025-06-13
  • Contact: WU Xiaoqun (1984-), professor, Ph.D. Her main research interests cover computer graphics, digital geometry processing and image processing. E-mail:wuxiaoqun@btbu.edu.cn
  • First author:LIU Xin (2000-), master student. His main research interests cover computer graphics, digital geometry processing and image processing. E-mail:2230702022@st.btbu.edu.cn
  • Supported by:
    National Natural Science Foundation of China General Program(62272014)

摘要:

为了提高特征线提取结果的精度和质量,针对现有算法在颜色和几何边界难以区分,直线段表示的特征线不连续、不平滑等问题,提出了一种面向RGB-D数据的特征线提取与表示算法。同时,充分利用RGB图像与深度图像之间紧密耦合且互为补充的特性,结合颜色和几何信息,提出一种融合颜色和几何的边界提取和表示算法。首先基于RGB-D数据中的颜色、深度、法向和曲率等几何信息,以及对应的平面几何特征,提取稠密的几何边界特征点集;接着,通过稀疏处理优化特征点集,并在此基础上加入角点信息,以增强特征线的表示能力;最后,采用3次B样条曲线紧致、连续、光滑地表示特征线,且在曲线拟合过程中通过重节点设置确保曲线能够经过关键角点,以此较好地表示恢复特征线的准确走势。以自采和公开的RGB-D数据集进行实验,并与其他几种特征线提取算法进行比较,结果表明,该算法在NYU v2数据集上的提取精度达到了0.82,召回率达到了0.59,交并比达到了0.54,可以从包含深度噪声的低质量RGB-D输入中有效提取连续、光滑的几何特征线,具有明显优势。

关键词: RGB-D, 特征线提取, 特征线表示, 稠密与稀疏处理, B样条曲线

Abstract:

To improve the accuracy and quality of feature line extraction, a novel algorithm for RGB-D data was proposed to address the challenges of distinguishing between color and geometric boundaries and resolving the discontinuity and roughness of feature lines represented by straight line segments. The proposed algorithm fully utilized the close coupling and complementary properties between RGB and depth images, integrating color and geometric information to enhance the quality of line extraction results. First, the algorithm extracted a dense set of geometric boundary feature points based on color, depth, normal vectors, curvature, and other geometric information, as well as the corresponding planar geometric features of the RGB-D input. Subsequently, the feature point set was optimized using sparse processing, and corner point information was incorporated to enhance the feature line representation. Lastly, the lines were fitted and represented by cubic B-splines, which offered compactness, continuity, and smoothness. During the curve fitting process, a heavy node setting was applied to ensure that the curve passed through the key corner points, thereby accurately representing the trend of the recovered feature line. In order to verify the effectiveness of the proposed algorithm, experiments were performed on both self-collected and publicly accessible RGB-D datasets. Comparative evaluations against existing algorithms demonstrated that the proposed algorithm achieved an extraction precision of 0.82, a recall rate of 0.59, and an intersection-to-union ratio of 0.54 on the NYU v2 dataset. The results indicated that the algorithm can effectively extract continuous and smooth geometric lines from low-quality RGB-D inputs afflicted with deep noise.

Key words: RGB-D, feature line extraction, feature line representation, dense and sparse processing, B-splines

中图分类号: