欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (3): 532-541.DOI: 10.11996/JG.j.2095-302X.2025030532

• 图像处理与计算机视觉 • 上一篇    下一篇

基于改进YOLOv8的防振锤缺陷目标检测算法

牛杭(), 葛鑫雨, 赵晓瑜, 杨珂, 王乾铭(), 翟永杰   

  1. 华北电力大学自动化系,河北 保定 071003
  • 收稿日期:2024-09-10 接受日期:2024-10-28 出版日期:2025-06-30 发布日期:2025-06-13
  • 通讯作者:王乾铭(1995-),男,讲师,博士。主要研究方向为电力视觉、深度学习以及故障诊断。E-mail:qianmingwang@ncepu.edu.cn
  • 第一作者:牛杭(1991-),男,讲师,博士。主要研究方向为智能检测、诊断与控制。E-mail:hangniu@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金(62373151);中央高校基本科研业务费专项资金(2022MS097);河北省自然科学基金面上项目(F2023502010);河北省高等学校科学技术研究项目(QN2024071)

Vibration damper defect detection algorithm based on improved YOLOv8

NIU Hang(), GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming(), ZHAI Yongjie   

  1. Department of Automation, North China Electric Power University, Baoding Hebei 071003, China
  • Received:2024-09-10 Accepted:2024-10-28 Published:2025-06-30 Online:2025-06-13
  • Contact: WANG Qianming (1995-), lecturer, Ph.D. His main research interests cover power vision, deep learning and fault diagnosis. E-mail:qianmingwang@ncepu.edu.cn
  • First author:NIU Hang (1991-), lecturer, Ph.D. His main research interests cover intelligent detection, diagnosis and control. E-mail:hangniu@ncepu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(62373151);The Fundamental Research Funds for the Central Universities(2022MS097);Natural Science Foundation of Hebei Province(F2023502010);Science and Technology Research Project of Hebei Colleges and Universities(QN2024071)

摘要:

利用无人机对输电线路进行巡检的过程中,航拍的防振锤图像目标尺度多变且背景复杂,容易导致漏检、误检。为此,针对现有目标检测算法在复杂背景和多尺度目标检测方面的局限性,提出了一种基于改进YOLOv8的防振锤缺陷目标检测算法。首先,提出多尺度特征提取(MSFE)模块,有效扩大模型的感受野,增强模型的多尺度特征提取能力;其次,设计空间金字塔核注意力(SPKA)模块,提升模型对目标的全局感知能力,在多尺度特征融合过程中抑制复杂背景的干扰;最后,由于小尺度目标在图像中易被忽略,在网络中增加丰富小目标语义信息的特征层(STSIL),提高小目标缺陷检测能力。对比实验中,改进算法与基线模型YOLOv8s相比mAP50提升了5.7%,防振锤正常、倾斜、掉落的AP50分别提升了3.4%,4.5%和9.2%,证明了改进算法对防振锤缺陷检测的有效性与先进性,且其应用将有助于保障电力系统的安全可靠运行。

关键词: 输电线路, 防振锤, 缺陷检测, 多尺度目标, 注意力机制

Abstract:

During drone inspections of transmission lines, the aerial images of vibration dampers exhibited varying target scales and complex backgrounds, which can easily lead to missed or false detections. To address the limitations of existing object detection algorithms in handling complex backgrounds and multi-scale target detection, an improved YOLOv8-based detection algorithm for identifying defects in vibration dampers was proposed. Firstly, to enhance the model’s ability to extract multi-scale features, a multi-scale feature extraction (MSFE) module was introduced, effectively expanding the model’s receptive field. Secondly, to suppress interference from complex backgrounds during the multi-scale feature fusion process, a space pyramid kernel attention (SPKA) module was designed to improve the model’s global awareness of the target. Lastly, to improve the detection capability for small target defects, a small target semantic information layer (STSIL) was added to the network, providing rich semantic information for small-scale targets that were easily overlooked in images. In the comparison experiments, the mAP50 of the improved algorithm increased by 5.7% over the baseline model YOLOv8s, with AP50 for normal, tilted, and fallen vibration dampers increasing by 3.4%, 4.5%, and 9.2%, respectively, demonstrating the effectiveness and superiority of the proposed algorithm in detecting defects in vibration dampers. The application of the proposed algorithm was expected to contribute to ensuring the safe and reliable operation of the power system.

Key words: transmission lines, vibration dampers, defect detection, multi-scale targets, feature fusion, attention mechanism

中图分类号: