[1] |
WANG C L, HAN J. DL4SciVis: a state-of-the-art survey on deep learning for scientific visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(8): 3714-3733.
|
[2] |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2022, 65(1): 99-106.
|
[3] |
王稚儒, 常远, 鲁鹏, 等. 神经辐射场加速算法综述[J]. 图学学报, 2024, 45(1): 1-13.
DOI
|
|
WANG Z R, CHANG Y, LU P, et al. A review on neural radiance fields acceleration[J]. Journal of Graphics, 2024, 45(1): 1-13 (in Chinese).
DOI
|
[4] |
LU Y Z, JIANG K, LEVINE J A, et al. Compressive neural representations of volumetric scalar fields[J]. Computer Graphics Forum, 2021, 40(3): 135-146.
|
[5] |
SHAH K, SITAWARIN C. SPDER: semiperiodic damping- enabled object representation[EB/OL]. [2024-06-22]. https://dblp.uni-trier.de/rec/conf/iclr/ShahS24.html?view=bibtex.
|
[6] |
LIANG X, ZHAO K, DI S, et al. SZ3: a modular framework for composing prediction-based error-bounded lossy compressors[J]. IEEE Transactions on Big Data, 2023, 9(2): 485-498.
|
[7] |
BALLESTER-RIPOLL R, LINDSTROM P, PAJAROLA R. TTHRESH: tensor compression for multidimensional visual data[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(9): 2891-2903.
|
[8] |
SHEIBANIFARD A, YU H C. A novel implicit neural representation for volume data[J]. Applied Sciences, 2023, 13(5): 3242.
|
[9] |
高宜琛, 连宙辉, 唐英敏, 等. 一种新的矢量中文字库自动压缩方法[J]. 图学学报, 2021, 42(3): 426-431.
|
|
GAO Y C, LIAN Z H, TANG Y M, et al. A new automatic compression method for Chinese vector fonts[J]. Journal of Graphics, 2021, 42(3): 426-431 (in Chinese).
|
[10] |
MURAKI S. Approximation and rendering of volume data using wavelet transforms[C]// The 3rd Visualization Conference. New York: IEEE Press, 1992: 21-28.
|
[11] |
YEO B L, LIU B. Volume rendering of DCT-based compressed 3D scalar data[J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1(1): 29-43.
|
[12] |
刘尚武, 魏巍, 段晓东, 等. 三维模型有向三角面片链码压缩方法[J]. 图学学报, 2021, 42(2): 237-244.
|
|
LIU S W, WEI W, DUAN X D, et al. Compression of directed surface chain code in 3D model[J]. Journal of Graphics, 2021, 42(2): 237-244 (in Chinese).
|
[13] |
MA S W, ZHANG X F, JIA C M, et al. Image and video compression with neural networks: a review[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(6): 1683-1698.
|
[14] |
LIU J M, SUN H M, KATTO J. Learned image compression with mixed transformer-CNN architectures[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14388-14397.
|
[15] |
HAN J, ZHENG H, BI C K. KD-INR: time-varying volumetric data compression via knowledge distillation-based implicit neural representation[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(10): 6826-6838.
|
[16] |
LI H, YANG X R, ZHAI H J, et al. Vox-Surf: voxel-based implicit surface representation[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(3): 1743-1755.
|
[17] |
TANG K Y, WANG C L. STSR-INR: spatiotemporal super-resolution for multivariate time-varying volumetric data via implicit neural representation[J]. Computers & Graphics, 2024, 119: 103874.
|
[18] |
TAKIKAWA T, LITALIEN J, YIN K X, et al. Neural geometric level of detail: real-time rendering with implicit 3D shapes[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11353-11362.
|
[19] |
REISER C, PENG S Y, LIAO Y Y, et al. KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14315-14325.
|
[20] |
SARAGADAM V, TAN J, BALAKRISHNAN G, et al. MINER: multiscale implicit neural representation[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 318-333.
|
[21] |
MARTEL J N P, LINDELL D B, LIN C Z, et al. Acorn: adaptive coordinate networks for neural scene representation[J]. ACM Transactions on Graphics, 2021, 40(4): 58.
|
[22] |
CHEN Y B, WANG X L. Transformers as meta-learners for implicit neural representations[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 170-187.
|
[23] |
BENBARKA N, HÖFER T, RIAZ H U M. Seeing implicit neural representations as Fourier series[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 2283-2292.
|
[24] |
SHENOUDA J, ZHOU Y M, NOWAK R D. ReLUs are sufficient for learning implicit neural representations[EB/OL]. [2024-06-22]. https://dblp.uni-trier.de/rec/conf/icml/Shenouda ZN24.html?view=bibtex.
|
[25] |
HAN J, WANG C L. CoordNet: data generation and visualization generation for time-varying volumes via a coordinate-based neural network[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(12): 4951-4963.
|
[26] |
DAMODARAN B B, SCHNITZLER F, LAMBERT A, et al. Improved positional encoding for implicit neural representation based compact data representation[EB/OL]. [2024-05-22]. https://arxiv.org/abs/2311.06059.
|
[27] |
TANCIK M, SRINIVASAN P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 632.
|
[28] |
ZHENG J Q, RAMASINGHE S, LI X Q, et al. Trading positional complexity vs deepness in coordinate networks[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 144-160.
|
[29] |
XIE S W, ZHU H, LIU Z, et al. DINER: disorder-invariant implicit neural representation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 6143-6152.
|
[30] |
DAMODARAN B B, BALCILAR M, GALPIN F, et al. RQAT-INR: improved implicit neural image compression[C]// 2023 Data Compression Conference. New York: IEEE Press, 2023: 208-217.
|
[31] |
FOUMANI N M, TAN C W, WEBB G I, et al. Improving position encoding of transformers for multivariate time series classification[J]. Data Mining and Knowledge Discovery, 2024, 38(1): 22-48.
|
[32] |
WURSTER S W, GUO H Q, SHEN H W, et al. Deep hierarchical super resolution for scientific data[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(12): 5483-5495.
|
[33] |
HAN J, WANG C L. SSR-TVD: spatial super-resolution for time-varying data analysis and visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 28(6): 2445-2456.
|
[34] |
POPINET S, SMITH M, STEVENS C. Experimental and numerical study of the turbulence characteristics of airflow around a research vessel[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(10): 1575-1589.
|
[35] |
GÜNTHER T, GROSS M, THEISEL H. Generic objective vortices for flow visualization[J]. ACM Transactions on Graphics, 2017, 36(4): 141.
|
[36] |
DENG L, WANG Y Q, LIU Y, et al. A CNN-based vortex identification method[J]. Journal of Visualization, 2019, 22(1): 65-78.
DOI
|