当前训练后量化方法(post-training quantization)在高比特量化位宽下可以实现精度近乎无损的量化,但对于轻量卷积神经网络(CNN)来说,其量化误差仍然不可忽视,特别是低位宽(<4比特)量化的情况。针对该问题,提出了一种面向轻量CNN的训练后量化方法,即块级批归一化学习(BBL)方法。不同于当前训练后量化方法合并批归一化层的方式,该方法以模型块为单位保留批归一化层的权重,基于块级特征图重建损失对模型量化参数和批归一化层的参数进行学习,且更新批归一化层的均值和方差等统计量,以一种简单且有效的方式缓解了轻量CNN在低比特量化时产生的分布漂移问题。其次,为了降低训练后量化方法对校准数据集的过拟合,构建了块级的数据增强方法,避免不同模型块对同一批校准数据进行学习。并在ImageNet数据集上进行了实验验证,实验结果表明,相比于当前训练后量化算法,BBL方法识别精度最高能提升7.72个百分点,并有效减少轻量CNN在低比特训练后量化时产生的量化误差。