[1] |
马鸿宇, 申立勇, 姜鑫, 等. 数控加工中路径规划与速度插补综述[J]. 图学学报, 2022, 43(6): 967-986.
|
|
MA H Y, SHEN L Y, JIANG X, et al. A survey of path planning and feedrate interpolation in computer numerical control[J]. Journal of Graphics, 2022, 43(6): 967-986 (in Chinese).
|
[2] |
李飞, 陈树林, 崔庞博, 等. 整体叶盘机器人砂带磨削轨迹优化及其实验[J]. 金刚石与磨料磨具工程, 2022, 42(1): 23-29.
|
|
LI F, CHEN S L, CUI P B, et al. Trajectory optimization and experiment of robotic belt grinding blisk[J]. Diamond & Abrasives Engineering, 2022, 42(1): 23-29 (in Chinese).
|
[3] |
赵欢, 姜宗民, 丁汉. 航空发动机叶片叶缘随形磨抛刀路规划[J]. 航空学报, 2021, 42(10): 524318.
DOI
|
|
ZHAO H, JIANG Z M, DING H. Tool path planning for profiling grinding of aero engine blade edgel[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524318 (in Chinese).
DOI
|
[4] |
HUA Y, WANG X W, WANG Y, et al. A novel trajectory planning method for mobile robotic grinding wind turbine blade[J]. Journal of Manufacturing Processes, 2024, 132: 142-158.
|
[5] |
MA K W, HAN L, SUN X X, et al. A path planning method of robotic belt grinding for workpieces with complex surfaces[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 728-738.
|
[6] |
JI S J, LEI L G, ZHAO J, et al. An adaptive real-time NURBS curve interpolation for 4-axis polishing machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102025.
|
[7] |
HUANG Z, SONG R, WAN C B, et al. Trajectory planning of abrasive belt grinding for aero-engine blade profile[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1): 605-614.
|
[8] |
贾明超, 冯斌, 吴鹏, 等. 一种融合改进A*算法与改进动态窗口法的文旅服务机器人路径规划[J]. 图学学报, 2024, 45(3): 505-515.
DOI
|
|
JIA M C, FENG B, WU P, et al. A path planning for cultural tourism service robot combining improved A* algorithm and improved dynamic window approach[J]. Journal of Graphics, 2024, 45(3): 505-515 (in Chinese).
DOI
|
[9] |
HE S S, DENG Y C, YAN C Y, et al. A tolerance constrained robot path circular interpolation method for industrial SCARA robots[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 235(6/7): 1061-1073.
|
[10] |
LIN X J, XIN X P, SHAN X F, et al. Optimal parameter ranges of material removal depth of abrasive cloth wheel polishing based on sensitivity analysis[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(12): 5165-5179.
|
[11] |
MA K W, XU F Y, XU Q Y, et al. Trajectory error compensation method for grinding robots based on kinematic calibration and joint variable prediction[J]. Robotics and Computer-Integrated Manufacturing, 2025, 92: 102889.
|
[12] |
LV Y J, PENG Z, QU C, et al. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66: 101987.
|
[13] |
JI W, WANG L H. Industrial robotic machining: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 1239-1255.
|
[14] |
HOU Z W, ZHOU Z T, LIU P, et al. Robotic trajectories and morphology manipulation of single particle and granular materials by a vibration tweezer[J]. Soft Robotics, 2021, 8(1): 1-9.
|
[15] |
YANG Z Y, CHU Y, XU X H, et al. Prediction and analysis of material removal characteristics for robotic belt grinding based on single spherical abrasive grain model[J]. International Journal of Mechanical Sciences, 2021, 190: 106005.
|
[16] |
WANG Q H, LIANG Y J, XU C Y, et al. Generation of material removal map for freeform surface polishing with tilted polishing disk[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9): 4213-4226.
|
[17] |
DING W F, ZHAO B, ZHANG Q L, et al. Fabrication and wear characteristics of open-porous cBN abrasive wheels in grinding of Ti-6Al-4V alloys[J]. Wear, 2021, 477: 203786.
|
[18] |
郭磊, 王家庆, 明子航, 等. 基于弹性基体磨具的3D打印高温合金叶片磨抛试验[J]. 表面技术, 2023, 52(2): 43-54.
|
|
GUO L, WANG J Q, MING Z H, et al. Grinding and polishing test of 3D-printed superalloy blade based on elastic-matrix abrasive tool[J]. Surface Technology, 2023, 52(2): 43-54 (in Chinese).
|
[19] |
张军锋, 史耀耀, 蔺小军, 等. 基于修正Preston方程的百页轮抛光材料去除深度建模[J]. 中国机械工程, 2022, 33(22): 2711-2716.
|
|
ZHANG J F, SHI Y Y, LIN X J, et al. Modeling of material removal depth in ABFW polishing based on modified preston equation[J]. China Mechanical Engineering, 2022, 33(22): 2711-2716 (in Chinese).
DOI
|
[20] |
波波夫瓦伦丁 L. 接触力学与摩擦学的原理及其应用[M]. 李强, 雒建斌, 译. 2版. 北京: 清华大学出版社, 2019: 48-55.
|
|
POPOV V L. Contact mechanics and friction physical principles and applications[M]. LI Q, LUO J B, Translate. 2nd ed. Beijing: Tsinghua University Press, 2019: 48-55 (in Chinese).
|
[21] |
肖飞. 基于力控机器人的航空发动机叶片精密砂带磨削工艺研究[D]. 南昌: 南昌大学, 2022.
|
|
XIAO F. Research on precision abrasive belt grinding process of aeroengine blade based on force control robot[D]. Nanchang: Nanchang University, 2022 (in Chinese).
|
[22] |
陈树林. 整体叶盘高表面完整性机器人砂带磨削轨迹规划及实验研究[D]. 重庆: 重庆大学, 2023.
|
|
CHEN S L. Research on trajectory planning and experiments of robotic belt grinding for blisk with high surface integrity[D]. Chongqing: Chongqing University, 2023 (in Chinese).
|