[1] |
JI Y, ZHANG J, HOU M D, et al. Review: osseointegration of titanium-based and zirconia implants: novel perspective on features, influencing factors and improvements[J]. Journal of Materials Science, 2024, 59(34): 16020-16037.
|
[2] |
李彤, 苏松林, 安邦, 等. 高性能低成本钛合金生产应用现状[J]. 特钢技术, 2024, 30(3): 8-11, 15.
|
|
LI T, SU S L, AN B, et al. Current status of production and application of high-performance and low-cost titanium alloys[J]. Special Steel Technology, 2024, 30(3): 8-11, 15(in Chinese).
|
[3] |
GAO L, HUANG H G, ZHANG Y Q, et al. Numerical modeling of EBCHM for large-scale TC4 alloy round ingots[J]. JOM, 2018, 70(12): 2934-2942.
|
[4] |
常化强, 朱俊杰, 刘茵琪, 等. 电子束冷床熔炼钛扁锭真空冷却时间对平直度的影响[J]. 材料开发与应用, 2017, 32(1): 58-61.
|
|
CHANG H Q, ZHU J J, LIU Y Q, et al. Influence of vacuum colling time of electron beam cold hearth melting on Ti ingot straightness[J]. Development and Application of Materials, 2017, 32(1): 58-61 (in Chinese).
|
[5] |
LIU Q L, LI X M, JIANG Y H. Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process[J]. Vacuum, 2017, 141: 1-9.
|
[6] |
李阳, 王力, 王运, 等. EB炉冷床内钛液流动、传热和挥发行为研究[J]. 钛工业进展, 2023, 40(4): 6-12.
|
|
LI Y, WANG L, WANG Y, et al. Study on flow, heat transfer and volatilization behavior of molten titanium in cold hearth during EB furnace melting process[J]. Titanium Industry Progress, 2023, 40(4): 6-12 (in Chinese).
|
[7] |
史亚飞, 彭冰冰, 李向明, 等. 电子束冷床熔炼TA10钛合金扁锭温度场及凝固组织的数值模拟[J]. 昆明理工大学学报(自然科学版), 2022, 47(5): 22-31, 39.
|
|
SHI Y F, PENG B B, LI X M, et al. Numerical simulation of temperature field and solidification microstructure of flat ingots of TA10 titanium alloy by EBCHM[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2022, 47(5): 22-31, 39(in Chinese).
|
[8] |
杜彬, 唐增辉, 张志斌, 等. TC4合金的电子束冷床炉熔炼工艺[J]. 中国有色金属学报, 2020, 30(12): 2989-2995.
|
|
DU B, TANG Z H, ZHANG Z B, et al. Melting technology of electron beam cold hearth melting of TC4 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(12): 2989-2995 (in Chinese).
|
[9] |
WANG Y P, GAO L, XIN Y C, et al. Numerical modeling of electron beam cold hearth melting for the cold hearth[J]. Minerals, 2024, 14(6): 601.
|
[10] |
WANG Y C, ZHANG X M, ZHANG Y X, et al. The effect of the thermal deformation of casting roll on strip thickness in the strip casting process[J]. Steel Research International, 2022, 93(11): 2200115.
|
[11] |
DALVI-ISFAHAN M. Effect of flow behavior index of CMC solutions on heat transfer and fluid flow in a cylindrical can[J]. Journal of Food Process Engineering, 2024, 47(6): e14672.
|
[12] |
刘千里. 电子束冷床炉熔铸超长超薄TA1及TC4扁锭凝固过程控制研究[D]. 昆明: 昆明理工大学, 2018.
|
|
LIU Q L. Study on solidification process control of ultra-long and ultra-thin TA1 and TC4 flat ingots cast in electron beam cooled bed furnace[D]. Kunming: Kunming University of Science and Technology, 2018 (in Chinese).
|
[13] |
ZHU Z Z, LI X M, ZHOU R F, et al. Numerical simulation of molybdenum and nickel distribution in large-scale slab ingots of Ti-0.3 wt.% Mo-0.8 wt.% Ni alloys during electron beam cold hearth melting[J]. JOM, 2022, 74(10): 3811-3820.
|
[14] |
翁兆志. EB炉熔炼TA10合金电子枪工艺条件对铸锭凝固过程影响研究[D]. 昆明: 昆明理工大学, 2023.
|
|
WENG Z Z. Study on the effect of EB furnace melting TA10 alloy electron gun process conditions on ingot solidification process[D]. Kunming: Kunming University of Science and Technology, 2023 (in Chinese).
|