| [1] | 
																						 
											  ALLAN M, KONDO S, BODENSTEDT S, et al. 2018 robotic scene segmentation challenge[EB/OL]. [2025-04-26]. https://arxiv.org/abs/2001.11190v3.
											 											 | 
										
																													
																						| [2] | 
																						 
											  ALLAN M, SHVETS A, KURMANN T, et al. 2017 robotic instrument segmentation challenge[EB/OL]. [2025-04-26]. https://arxiv.org/abs/1902.06426.
											 											 | 
										
																													
																						| [3] | 
																						 
											  NI Z L, BIAN G B, LI Z, et al. Space squeeze reasoning and low-rank bilinear feature fusion for surgical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(7): 3209-3217.
											 											 | 
										
																													
																						| [4] | 
																						 
											  JIN Y M, YU Y, CHEN C, et al. Exploring intra- and inter-video relation for surgical semantic scene segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 2991-3002.
											 											 | 
										
																													
																						| [5] | 
																						 
											  LIU M, HAN Y B, WANG J Z, et al. LSKANet: long strip kernel attention network for robotic surgical scene segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(4): 1308-1322.
											 											 | 
										
																													
																						| [6] | 
																						 
											  KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 3992-4003.
											 											 | 
										
																													
																						| [7] | 
																						 
											  CHEN C, MIAO J Z, WU D F, et al. MA-SAM: modality-agnostic SAM adaptation for 3D medical image segmentation[J]. Medical Image Analysis, 2024, 98: 103310.
											 											 | 
										
																													
																						| [8] | 
																						 
											  张新宇, 张家意, 高欣. ASC-Net: 腹腔镜视频中手术器械与脏器快速分割网络[J]. 图学学报, 2024, 45(4): 659-669. 
											 												 
																									DOI    
																																															 											 | 
										
																													
																						 | 
																						 
											  ZHANG X Y, ZHANG J Y, GAO X. ASC-Net: fast segmentation network for surgical instruments and organs in laparoscopic video[J]. Journal of Graphics, 2024, 45(4): 659-669 (in Chinese). 
											 												 
																									DOI    
																																															 											 | 
										
																													
																						| [9] | 
																						 
											  RAVI N, GABEUR V, HU Y T, et al. SAM 2:segment anything in images and videos[EB/OL]. [2025-04-26]. https://arxiv.org/abs/2408.00714v2.
											 											 | 
										
																													
																						| [10] | 
																						 
											  HAYOU S, GHOSH N, YU B. LoRA+: efficient low rank adaptation of large models[EB/OL]. [2025-04-26]. https://arxiv.org/abs/2402.12354v1.
											 											 | 
										
																													
																						| [11] | 
																						 
											  DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2005: 886-893.
											 											 | 
										
																													
																						| [12] | 
																						 
											  BHATTARAI B, SUBEDI R, GAIRE R R, et al. Histogram of oriented gradients meet deep learning: a novel multi-task deep network for 2D surgical image semantic segmentation[J]. Medical Image Analysis, 2023, 85: 102747.
											 											 | 
										
																													
																						| [13] | 
																						 
											  WANG Z Y, LU B, LONG Y H, et al. AutoLaparo: a new dataset of integrated multi-tasks for image-guided surgical automation in laparoscopic hysterectomy[C]// The 25th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2022: 486-496.
											 											 | 
										
																													
																						| [14] | 
																						 
											  HU E J, SHEN Y L, WALLIS P, et al. LORA: low-rank adaptation of large language models[EB/OL]. [2025-04-26]. https://arxiv.org/abs/2106.09685v1.
											 											 | 
										
																													
																						| [15] | 
																						 
											  XIONG X Y, WU Z H, TAN S Y, et al. SAM2-UNET: segment anything 2 makes strong encoder for natural and medical image segmentation[EB/OL]. [2025-04-26]. https://arxiv.org/abs/2408.08870.
											 											 | 
										
																													
																						| [16] | 
																						 
											  RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer, 2015: 234-241.
											 											 | 
										
																													
																						| [17] | 
																						 
											  IGLOVIKOV V, SHVETS A. TernausNet: U-net with VGG 11 encoder pre-trained on ImageNet for image segmentation[EB/OL]. [2025-04-26]. https://arxiv.org/abs/1801.05746.
											 											 | 
										
																													
																						| [18] | 
																						 
											  CHAURASIA A, CULURCIELLO E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]// 2017 IEEE Visual Communications and Image Processing. New York: IEEE Press, 2017: 1-4.
											 											 | 
										
																													
																						| [19] | 
																						 
											  CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder- decoder with atrous separable convolution for semantic image segmentation[C]// The 15th European Conference on Computer Vision. New York: IEEE Press, 2018: 833-851.
											 											 | 
										
																													
																						| [20] | 
																						 
											  RAHMAN M M, MUNIR M, MARCULESCU R. EMCAD: efficient multi-scale convolutional attention decoding for medical image segmentation[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 11769-11779.
											 											 | 
										
																													
																						| [21] | 
																						 
											  CHEN J N, MEI J R, LI X H, et al. TransUNet: rethinking the U-Net architecture design for medical image segmentation through the lens of transformers[J]. Medical Image Analysis, 2024, 97: 103280.
											 											 | 
										
																													
																						| [22] | 
																						 
											  RUAN J C, LI J C, XIANG S C. VM-UNeT: vision mamba UNet for medical image segmentation[EB/OL]. [2025-04-26]. https://arxiv.org/abs/2402.02491v2.
											 											 |