[1] |
GUPTA A, SAVARESE S, GANGULI S, et al. Embodied intelligence via learning and evolution[J]. Nature communications, 2021, 12(1): 5721.
DOI
PMID
|
[2] |
MATHUR P, PANDIAN K S. Terrain classification for traversability analysis for autonomous robot navigation in unknown natural terrain[J]. International Journal of Engineering Science and Technology, 2012, 4(1): 38-49.
|
[3] |
LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science robotics, 2020, 5(47): eabc5986.
|
[4] |
WELLHAUSEN L, DOSOVITSKIY A, RANFTL R, et al. Where should i walk? predicting terrain properties from images via self-supervised learning[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1509-1516.
|
[5] |
LONG Y X, LI X Q, CAI W Z, et al. Discuss before moving: Visual language navigation via multi-expert discussions[C]// 2024 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2024: 17380-17387.
|
[6] |
张慧, 荣学文, 李贻斌, 等. 四足机器人地形识别与路径规划算法[J]. 机器人, 2015, 37(5): 546-556.
DOI
|
|
ZHANG H, RONG X W, LI Y B, et al. Terrain recognition and path planning for quadruped robot[J]. Robot, 2015, 37(5): 546-556 (in Chinese).
DOI
|
[7] |
FANKHAUSER P, BJELONIC M, BELLICOSO C D, et al. Robust rough-terrain locomotion with a quadrupedal robot[C]// 2018 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2018: 5761-5768.
|
[8] |
JENELTEN F, MIKI T, VIJAYAN A E, et al. Perceptive locomotion in rough terrain-online foothold optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5370-5376.
|
[9] |
KUROBE A, NAKAJIMA Y, KITANI K, et al. Audio-visual self-supervised terrain type recognition for ground mobile platforms[J]. IEEE Access, 2021, 9: 29970-29979.
|
[10] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
|
[11] |
赵迪, 戴志鹏, 李世其, 等. 巡视探测任务中复杂地形信息感知与场景建模[J]. 航天器工程, 2019, 28(5): 32-38.
|
|
ZHAO D, DAI Z P, LI S Q, et al. Perception and scene modeling of complex terrain information in patrol and exploration tasks[J]. Spacecraft Engineering, 2019, 28(5): 32-38 (in Chinese).
|
[12] |
张明路, 王哲, 李满宏, 等. 基于足端位置的六足机器人漫游地形感知与表征[J]. 机械工程学报, 2021, 57(19): 48-60.
DOI
|
|
ZHANG M L, WANG Z, LI M H, et al. Perception and representation of roaming terrain for a hexapod robot based on foot positions[J]. Journal of Mechanical Engineering, 2021, 57(19): 48-60 (in Chinese).
DOI
|
[13] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834-848.
|
[14] |
HOWARD A, SERAJI H. Vision‐based terrain characterization and traversability assessment[J]. journal of robotic systems, 2001, 18(10): 577-587.
|
[15] |
KINGRY N, JUNG M, DERSE E, et al. Vision-based terrain classification and solar irradiance mapping for solar-powered robotics[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2018: 5834-5840.
|
[16] |
张桂梅, 陶辉, 鲁飞飞, 等. 基于双源判别器的域自适应城市场景语义分割[J]. 图学学报, 2023, 44(5): 907-917.
DOI
|
|
ZHANG G M, TAO H, LU F Fi, et al. Domain adaptive urban scene semantic segmentation based on dual-source discriminator[J]. Journal of Graphics, 2023, 44(5): 907-917 (in Chinese).
|
[17] |
WANG Z R, ZENG X, YAN Z Y, et al. AIR-PolSAR-Seg: a large-scale data set for terrain segmentation in complex-scene PolSAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3830-3841.
|
[18] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// The IEEE conference on computer vision and pattern recognition. New York: IEEE Press, 2016: 3213-3223.
|
[19] |
XU P, DING L, LI Z Y, et al. Learning physical characteristics like animals for legged robots[J]. National Science Review, 2023, 10(5): nwad045.
|
[20] |
李满宏, 张明路, 张建华, 等. 基于增强学习的六足机器人自由步态规划[J]. 机械工程学报, 2019, 55(5): 36-44.
DOI
|
|
LI M H, ZHANG M L, ZHANG J H, et al. Free gait planning for a hexapod robot based on reinforcement learning[J]. Journal of Mechanical Engineering, 2019, 55(5): 36-44 (in Chinese).
DOI
|
[21] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// The IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 3992-4003.
|
[22] |
吴精乙, 景峻, 贺熠凡, 等. 基于多模态大模型的高速公路场景交通异常事件分析方法[J]. 图学学报, 2024, 45(6): 1266-1276.
DOI
|
|
WU J Y, JING J, HE Y F, et al. Traffic anomaly event analysis method for highway scenes based on multimodal large language models[J]. Journal of Graphics, 2024, 45(6): 1266-1276 (in Chinese).
DOI
|
[23] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]//[2024-05-31]https://dblp.uni-trier.de/db/conf/icml/icml2021.html#RadfordKHRGASAM21.
|
[24] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(11): 2274-2282.
PMID
|
[25] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical image computing and computer-assisted intervention Cham:Springer, 2015: 234-241.
|
[26] |
MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(7): 3523-3542.
|
[27] |
ERISEN S. SERNet-former: segmentation by efficient-ResNet with attention-boosting gates and attention-fusion networks[C]// IEEE International Conference on Computer Vision and Machine Intelligence. New York: IEEE Press, 2024: 1-6.
|
[28] |
CHENG B W, COLLINS M D, ZHU Y K, et al. Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation[C]// The IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE Press, 2020: 12472-12482.
|
[29] |
ARASLANOV N, ROTH S. Self-supervised augmentation consistency for adapting semantic segmentation[C]// The IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE Press, 2021: 15379-15389.
|
[30] |
ZHANG YH, QIU Z F, YAO T, et al. Transferring and regularizing prediction for semantic segmentation[C]// The IEEE/CVF Conference on computer vision and pattern recognition. New York: IEEE Press, 2020: 9618-9627.
|