[1] |
POTAMIAS R A, ZHENG J L, PLOUMPIS S, et al. Learning to generate customized dynamic 3D facial expressions[C]// The 16th Computer Vision. Cham: Springer, 2020: 278-294.
|
[2] |
DAS A, DATTA S, GKIOXARI G, et al. Embodied question answering[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 1-10.
|
[3] |
刘嘉玮, 陈双敏, 王晓丽, 等. 三维打印中喷头的最优路径规划[J]. 图学学报, 2017, 38(1): 34-38.
DOI
|
|
LIU J W, CHEN S M, WANG X L, et al. Optimal nozzle path planning in 3D printing[J]. Journal of Graphics, 2017, 38(1): 34-38 (in Chinese).
DOI
|
[4] |
LIU R, AIGERMAN N, KIM V G, et al. DA Wand: distortion- aware selection using neural mesh parameterization[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16739-16749.
|
[5] |
宋琳, 高满屯, 王三民, 等. 融合区域和测地线的活动轮廓模型与图割相结合的自然图像分割[J]. 图学学报, 2015, 36(5): 756-762.
DOI
|
|
SONG L, GAO M T, WANG S M, et al. Combining region-based model with geodesic active contour for nature image segmentation using graph cut optimization[J]. Journal of Graphics, 2015, 36(5): 756-762 (in Chinese).
|
[6] |
SETHIAN J A, VLADIMIRSKY A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5699-5703.
|
[7] |
CRANE K, WEISCHEDEL C, WARDETZKY M. Geodesics in heat: a new approach to computing distance based on heat flow[J]. ACM Transactions on Graphics, 2013, 32(5): 152.
|
[8] |
MITCHELL J S B, MOUNT D M, PAPADIMITRIOU C H. The discrete geodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668.
|
[9] |
CHEN J D, HAN Y J. Shortest paths on a polyhedron[C]// The 6th Annual Symposium on Computational Geometry. New York: ACM, 1990: 360-369.
|
[10] |
SURAZHSKY V, SURAZHSKY T, KIRSANOV D, et al. Fast exact and approximate geodesics on meshes[J]. ACM Transactions on Graphics, 2005, 24(3): 553-560.
|
[11] |
XIN S Q, WANG G J. Improving Chen and Han’s algorithm on the discrete geodesic problem[J]. ACM Transactions on Graphics, 2009, 28(4): 104.
|
[12] |
LIU Y J. Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures[J]. Computer-Aided Design, 2013, 45(3): 695-704.
|
[13] |
XU C X, WANG T Y, LIU Y J, et al. Fast wavefront propagation (FWP) for computing exact geodesic distances on meshes[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(7): 822-834.
|
[14] |
QIN Y P, HAN X G, YU H C, et al. Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagation[J]. ACM Transactions on Graphics, 2016, 35(4): 125.
|
[15] |
ALEKSANDROV L, LANTHIER M, MAHESHWARI A, et al. An ε — Approximation algorithm for weighted shortest paths on polyhedral surfaces[C]// The 6th Scandinavian Workshop on Algorithm Theory. Cham: Springer, 1998: 11-22.
|
[16] |
XIN S Q, YING X, HE Y. Constant-time all-pairs geodesic distance query on triangle meshes[C]// ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2012: 31-38.
|
[17] |
ADIKUSUMA Y Y, FANG Z, HE Y. Fast construction of discrete geodesic graphs[J]. ACM Transactions on Graphics, 2020, 39(2): 14.
|
[18] |
YING X, WANG X N, HE Y. Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem[J]. ACM Transactions on Graphics, 2013, 32(6): 170.
|
[19] |
WANG X N, FANG Z, WU J J, et al. Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces[J]. Computer Aided Geometric Design, 2017, 52-53: 262-284.
|
[20] |
WEBER O, DEVIR Y S, BRONSTEIN A M, et al. Parallel algorithms for approximation of distance maps on parametric surfaces[J]. ACM Transactions on Graphics, 2008, 27(4): 104.
|
[21] |
TAO J, ZHANG J Y, DENG B L, et al. Parallel and scalable heat methods for geodesic distance computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 579-594.
|
[22] |
CAMPEN M, KOBBELT L. Walking on broken mesh: defect-tolerant geodesic distances and parameterizations[J]. Computer Graphics Forum, 2011, 30(2): 623-632.
|
[23] |
XIN S Q, QUYNH D T P, YING X, et al. A global algorithm to compute defect-tolerant geodesic distance[C]// SIGGRAPH Asia 2012 Technical Briefs. New York: ACM, 2012: 23.
|
[24] |
FENG N, CRANE K. A heat method for generalized signed distance[J]. ACM Transactions on Graphics, 2024, 43(4): 92.
|
[25] |
DU J, HE Y, FANG Z, et al. On the vertex-oriented triangle propagation (VTP) algorithm: parallelization and approximation[J]. Computer-Aided Design, 2021, 130: 102943.
|