欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1042-1049.DOI: 10.11996/JG.j.2095-302X.2025051042

• 计算机图形学与虚拟现实 • 上一篇    下一篇

跨越开边界的测地距离传播

岳子佳1(), 王文嵩2, 陈双敏1(), 辛士庆2, 屠长河2   

  1. 1 青岛科技大学信息科学技术学院山东 青岛 266061
    2 山东大学计算机科学与技术学院山东 青岛 266000
  • 收稿日期:2024-11-15 接受日期:2025-03-26 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:陈双敏(1982-),女,副教授,博士。主要研究方向为计算机图形学、深度几何处理等。E-mail:csmqq@163.com
  • 第一作者:岳子佳(2000-),女,硕士研究生。主要研究方向为计算机图形学。E-mail:4022110095@mails.qust.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3303200);国家自然科学基金(62272277);国家自然科学基金(U23A20312)

Geodesic distance propagation across open boundaries

YUE Zijia1(), WANG Wensong2, CHEN Shuangmin1(), XIN Shiqing2, TU Changhe2   

  1. 1 School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao Shandong 266061, China
    2 School of Computer Science and Technology, Shandong University, Qingdao Shandong 266000, China
  • Received:2024-11-15 Accepted:2025-03-26 Published:2025-10-30 Online:2025-09-10
  • First author:YUE Zijia (2000-), master student. Her main research interest covers computer graphics. E-mail:4022110095@mails.qust.edu.cn
  • Supported by:
    National Key R&D Program of China(2022YFB3303200);National Natural Science Foundation of China(62272277);National Natural Science Foundation of China(U23A20312)

摘要:

在数字几何处理领域,曲面上测地距离的计算是一项基本且关键的任务。在计算过程中,每个表面点同时扮演着接收器与发射器的角色,以实现整个曲面上的距离传播。当存在开边界缺陷时,已有算法尝试在外蕴空间中填补孔洞和缝隙。然而,其在应对高度弯曲处出现的开边界缺陷时仍显不足。为此,提出在不补洞的情况下让距离传播自然跨越孔洞的新思路。观察发现,传统算法在跨越孔洞后,会形成一个“阴影”区域;该区域内的最短路径经由孔洞的边界,从而产生了比真正测地距离更大的结果。基于该观察,对经典的快速行进法(FMM)进行了3项重要改进:首先,仅将边界点视为距离接收器,阻止向其他点传播距离;其次,允许每个点向前后2个方向传播距离,使得阴影区域内的点可以从周边的可见点获得测地距离;最后,通过调整距离传播的优先级实现“由近及远”和“从可见区域到阴影区域”这2种传播方式之间的平衡。实验证明,即使是极为复杂的开边界缺陷,该方法依然产生接近于真解(模型没有缺陷情况下)的测地距离。

关键词: 计算几何, 测地距离, 快速行进法, 缺陷网格, 开边界

Abstract:

In the field of digital geometry processing, the computation of geodesic distances on surfaces is a fundamental and crucial task. During the calculation process, each surface point serves as both a receiver and a transmitter to propagate distances across the entire surface. When there are open boundary defects, existing algorithms attempt to fill holes and gaps in the ambient space. However, this approach remains inadequate when dealing with open-boundary defects occurring in highly curved regions. To address this, a new approach was proposed allowing geodesic distance propagation to naturally traverse holes without filling them. It was observed that traditional algorithms, after crossing holes, formed a “shadow” region. In this region, the shortest path was found to pass through the hole’s boundary, producing distances larger than the true geodesic distance. Based on this observation, three significant improvements were made to the classical fast marching method (FMM): First, boundary points are treated solely as distance receivers, preventing them from propagating distances to other points. Second, each point was allowed to propagate distances in both forward and backward directions, enabling points in the shadow region to obtain geodesic distances from the surrounding visible points. Finally, a balance was achieved between “near to far” and “visible region to shadow region” propagation modes by adjusting the priority of distance propagation. Experimental results demonstrated that even with highly complex open boundary defects, our method produced geodesic distances closely approximating the true solution (the solution for a model without defects).

Key words: computational geometry, geodesic distance, fast marching method, broken mesh, open boundary

中图分类号: