欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1085-1093.DOI: 10.11996/JG.j.2095-302X.2025051085

• 数字化设计与制造 • 上一篇    下一篇

基于改进红鸢优化算法与LSTM的核电换热器寿命预测方法

鲜思渔1,2(), 赵泽田3, 吴轩宇1(), 冯毅雄1,2,3, 薛杨4, 张志峰3   

  1. 1 贵州大学机械工程学院贵州 贵阳 550025
    2 贵州大学省部共建公共大数据国家重点实验室贵州 贵阳 550025
    3 浙江大学流体动力基础件与机电系统全国重点实验室浙江 杭州 310027
    4 中广核工程有限公司广东 深圳 518116
  • 收稿日期:2025-05-07 接受日期:2025-07-10 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:吴轩宇(1998-),男,特聘教授,博士。主要研究方向为产品数字化设计与智能制造等。E-mail:xuanyuwu@zju.edu.cn
  • 第一作者:鲜思渔(2000-),男,硕士研究生。主要研究方向为核电设备预测性维修等。E-mail:2985712029@qq.com
  • 基金资助:
    浙江省重点研发计划(2024C01029);浙江省重点研发计划(2025C01023);贵州大学开放基金(PBD2024-0515)

Life prediction method of nuclear power heat exchanger based on improved red kite optimization algorithm and LSTM

XIAN Siyu1,2(), ZHAO Zetian3, WU Xuanyu1(), FENG Yixiong1,2,3, XUE Yang4, ZHANG Zhifeng3   

  1. 1 School of Mechanical Engineering, Guizhou University, Guiyang Guizhou 550025, China
    2 State Key Laboratory of Public Big Data, Co-built by the Province and Ministry, Guizhou University, Guiyang Guizhou 550025, China
    3 National Key Laboratory of Fluid Power Fundamental Components and Mechatronic Systems, Zhejiang University, Hangzhou Zhejiang 310027, China
    4 China General Nuclear Power Engineering Co., Ltd., Shenzhen Guangdong 518116, China
  • Received:2025-05-07 Accepted:2025-07-10 Published:2025-10-30 Online:2025-09-10
  • First author:XIAN Siyu (2000-), master student. His main research interests cover predictive maintenance of nuclear power equipment, etc. E-mail:2985712029@qq.com
  • Supported by:
    Zhejiang Provincial Key Research and Development Program(2024C01029);Zhejiang Provincial Key Research and Development Program(2025C01023);Guizhou University Open Fund(PBD2024-0515)

摘要:

随着核电设备数量的增加和种类的多样化,基于状态检测的预测性维修策略逐渐成为核电厂关注的重点,特别是对关键设备如冷却水换热器进行剩余使用寿命预测。因此提出了一种结合改进红鸢优化算法(IROA)与长短期记忆网络(LSTM)的换热器寿命预测方法,旨在克服传统方法在超参数调优方面的局限性,并提高预测精度。针对现有方法中初始种群多样性不足导致过早收敛的问题,引入遗传算法中的交叉和变异操作改进了ROA算法,以增强种群多样性和跳出局部最优解的能力。通过利用历史退化数据训练LSTM模型,详细分析了不同超参数组合对模型性能的影响,并证明了优化后的超参数组合能够显著提升预测效果。为了验证该方法的有效性,将IROA-LSTM与其他常见预测方法(如SVM、CNN、RNN、标准LSTM)及其他几种优化算法进行了对比实验,并且还设置了噪声干扰实验。结果表明,IROA-LSTM不仅在各项性能指标上表现出色,还展示了较强的鲁棒性和稳定性,能够在不同条件下保持较高的预测精度。为制定科学合理的维修策略提供了可靠的数据支持,有助于提高核电厂设备运行的安全性和经济性。

关键词: 寿命预测, 预测性维修, 换热器, 改进红鸢优化, 长短期记忆网络

Abstract:

With the increase in the quantity and diversification of nuclear power equipment, predictive maintenance strategies based on condition detection have gradually become a focus of attention for nuclear power plants, especially for predicting the remaining service life of key equipment, such as cooling water heat exchangers. A heat exchanger life prediction method combining an improved red kite optimization algorithm (IROA) with a long short-term memory network (LSTM) was proposed to address the limitations of traditional methods in hyperparameter optimization and improve prediction accuracy. In response to the problem of premature convergence caused by insufficient initial population diversity in existing methods, crossover and mutation operations from genetic algorithms were introduced to improve the ROA algorithm, in order to enhance population diversity and the ability to escape from local optima. With an LSTM model trained using historical degradation data, we conducted a detailed analysis of the impact of different hyperparameter combinations on model performance, demonstrating that the optimized hyperparameter combinations could significantly improve prediction performance. To verify the effectiveness of the proposed method, we conducted comparative experiments between IROA-LSTM and other common prediction methods such as SVM, CNN, RNN, and standard LSTM, as well as comparative experiments with several other optimization algorithms, along with noise interference tests. The results indicated that IROA-LSTM not only performed well in various performance indicators, but also demonstrated strong robustness and stability, maintaining high prediction accuracy under different conditions. This provided reliable data support for developing scientific and reasonable maintenance strategies, thereby contributing to improved safety and economic efficiency of nuclear power plant equipment operation.

Key words: life prediction, predictive maintenance, heat exchanger, improve red kite optimization, long short-term memory

中图分类号: