[1] |
KAUR S, SAHOTA R S, YING S Y, et al. Emerging trends in industry 4.0 and predictive maintenance[J]. Abhigyan, 2025, 43(1): 54-67.
|
[2] |
MAZZETTO S. Hybrid predictive maintenance for building systems: integrating rule-based and machine learning models for fault detection using a high-resolution Danish dataset[J]. Buildings, 2025, 15(4): 630.
|
[3] |
GUO J, ZHANG X W, CUI Y H. Estimation of fatigue parameters and life prediction for orthotropic steel deck based on reverse Markov theory[J]. Journal of Structural Engineering, 2025, 151(5): 04025037.
|
[4] |
陈卓, 闫明, 金映丽. 基于灰色马尔科夫模型的随机多次冲击损伤累积研究[J]. 振动与冲击, 2024, 43(24): 295-300.
|
|
CHEN Z, YAN M, JIN Y L. A study on damage accumulation ofrandom multiple impact based on a grey Markov model[J]. Journalof Vibration and Shock, 2024, 43(24): 295-300 (in Chinese).
|
[5] |
EZZOUHRI A, CHAROUH Z, GHOGHO M, et al. A data-driven-based framework for battery remaining useful life prediction[J]. IEEE Access, 2023, 11: 76142-76155.
|
[6] |
WANG F K, MAMO T. Hybrid approach for remaining useful life prediction of ball bearings[J]. Quality and Reliability Engineering International, 2019, 35(7): 2494-2505.
|
[7] |
LI N P, LEI Y G, GEBRAEEL N, et al. Multi-sensor data-driven remaining useful life prediction of semi-observable systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11482-11491.
|
[8] |
DE MARCO L M, TRIERWEILER J O, FARENZENA M. Determination of remaining useful life in cyclic processes[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 22048-22063.
|
[9] |
ZHANG W H, WANG Z H, RAÏSSI T, et al. An ellipsoid‐based framework for fault estimation and remaining useful life prognosis[J]. International Journal of Robust and Nonlinear Control, 2023, 33(12): 7260-7281.
|
[10] |
王炳波, 刘赓传. 基于无迹卡尔曼滤波的离心泵剩余寿命研究[J]. 石油机械, 2021, 49(11): 31-38.
|
|
WANG B B, LIU G C. Research on residual life of centrifugal pump based on unscented Kalman filter[J]. China Petroleum Machinery, 2021, 49(11): 31-38 (in Chinese).
|
[11] |
李乃鹏, 蔡潇, 雷亚国, 等. 一种融合多传感器数据的数模联动机械剩余寿命预测方法[J]. 机械工程学报, 2021, 57(20): 29-37, 46.
DOI
|
|
LI N P, CAI X, LEI Y G, et al. A model-data-fusion remaining useful life prediction method with multi-sensor fusion for machinery[J]. Journal of Mechanical Engineering, 2021, 57(20): 29-37, 46 (in Chinese).
DOI
|
[12] |
WANG S L, FAN Y C, JIN S Y, et al. Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries[J]. Reliability Engineering & System Safety, 2023, 230: 108920.
|
[13] |
ZHANG H X, XI X P, PAN R. A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks[J]. Reliability Engineering & System Safety, 2023, 237: 109332.
|
[14] |
TIAN G D, WANG W J, ZHANG H H, et al. Multi-objective optimization of energy-efficient remanufacturing system scheduling problem with lot-streaming production mode[J]. Expert Systems with Applications, 2024, 237: 121309.
|
[15] |
CHEN X F, YE C M, ZHANG Y. Strengthened grey wolf optimization algorithms for numerical optimization tasks and AutoML[J]. Swarm and Evolutionary Computation, 2025, 94: 101891.
|
[16] |
RAEISI-GAHRUEI J, BEHESHTI Z. The electricity consumption prediction using hybrid red kite optimization algorithm with multi-layer perceptron neural network[J]. Journal of Intelligent Procedures in Electrical Technology, 2025, 15(60): 1-22.
|
[17] |
ALSHAREEF S M, FATHY A. Efficient red kite optimization algorithm for integrating the renewable sources and electric vehicle fast charging stations in radial distribution networks[J]. Mathematics, 2023, 11(15): 3305.
|
[18] |
RUIZ R I. A GPU accelerated genetic algorithm for the construction of Hadamard matrices[D]. Rio Grande: The University of Texas Rio Grande Valley, 2022.
|
[19] |
熊思颖, 董黎君. 标记平面立体线图的自适应遗传算法[J]. 图学学报, 2018, 39(6): 1105-1111.
DOI
|
|
XIONG S Y, DONG L J. A self-adaptive genetic algorithm for labeling line drawings of planar objects[J]. Journal of Graphics, 2018, 39(6): 1105-1111 (in Chinese).
|
[20] |
GRAVES A. Long short-term memory[M]// GRAVESA. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer, 2012: 37-45.
|
[21] |
杨世强, 杨江涛, 李卓, 等. 基于LSTM神经网络的人体动作识别[J]. 图学学报, 2021, 42(2): 174-181.
|
|
YANG S Q, YANG J T, LI Z, et al. Human action recognition based on LSTM neural network[J]. Journal of Graphics, 2021, 42(2): 174-181 (in Chinese).
DOI
|
[22] |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]// 2008 International Conference on Prognostics and Health Management. New York: IEEE Press, 2008: 1-9.
|