欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1105-1112.DOI: 10.11996/JG.j.2095-302X.2025051105

• 数字化设计与制造 • 上一篇    下一篇

基于CFD的仿鱼机器人多模式游动机理研究

夏明海1(), 罗自荣1(), 殷谦2, 卢钟岳1, 蒋涛1   

  1. 1 国防科技大学智能科学学院湖南 长沙 410073
    2 长沙理工大学能源与动力工程学院湖南 长沙 410076
  • 收稿日期:2024-08-17 接受日期:2025-03-12 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:罗自荣(1974-),男,教授,博士。主要研究方向为智能无人系统平台与动力、微纳机器人等。E-mail:luozirong@nudt.edu.cn
  • 第一作者:夏明海(1995-),男,博士研究生。主要研究方向为仿生机器人。E-mail:xiaminghai@nudt.edu.cn
  • 基金资助:
    国家自然科学基金(52075537);国家自然科学基金(52105289);湖南省自然科学基金(2023JJ40048)

Multi-mode swimming mechanism of a biomimetic robotic fish based on CFD simulation

XIA Minghai1(), LUO Zirong1(), YIN Qian2, LU Zhongyue1, JIANG Tao1   

  1. 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha Hunan 410073, China
    2 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha Hunan 410076, China
  • Received:2024-08-17 Accepted:2025-03-12 Published:2025-10-30 Online:2025-09-10
  • First author:XIA Minghai (1995-), PhD candidate. His main research interest covers bionic robot. E-mail:xiaminghai@nudt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52075537);National Natural Science Foundation of China(52105289);Natural Science Foundation of Hunan Province, China(2023JJ40048)

摘要:

仿鱼机器人是一种新型水下航行器,具有噪音低、可靠性高、环境友好等突出优势。为探究仿鱼机器人双鳍驱动游动机理,基于计算流体力学方法进行机器人多模式运动性能数值仿真。推导了机器人运动学与动力学模型,建立了波动鳍空间运动方程。在Fluent软件中建立了机器人流体仿真模型,设计了力与运动耦合动网格仿真算法。仿真结果表明,机器人可以通过双侧波动长鳍的配合,实现前进后退、机动转弯、原地转向等多模式运动。机器人的推进力与波动频率平方成正比,机器人的游动速度、转弯速度均与波动频率成正比。频率为6 Hz时,仿真得到机器人的游动速度达到1.25 m/s,转向速度达到3.2 rad/s。研究结果验证了仿鱼机器人设计合理性与多模式运动性能,为机器人物理样机优化设计与运动控制提供理论参考与计算支撑。

关键词: 波动鳍, 仿生机器人, 计算流体力学, 动网格, 运动控制

Abstract:

Bionic robotic fish represent an innovative class of underwater vehicles, characterized by their low noise emission, high reliability, and eco-friendliness. This study investigates the swimming mechanisms of a dual-fin-driven robotic fish through numerical simulations of its multi-mode motion capabilities, employing computational fluid dynamics (CFD). Kinematic and dynamic models of the robotic fish were developed, and the spatial motion equations for the undulating fins were formulated. A fluid simulation model was constructed using Fluent software, incorporating a force-motion coupled dynamic mesh simulation algorithm. The simulation results demonstrated that the robotic fish could execute various multi-mode motions, including forward and backward movement, maneuvering turns, and in-place turns, through the coordinated action of its dual undulating fins. The propulsive force was found to be proportional to the square of the wave frequency, while both the swimming speed and turning speed were directly proportional to the wave frequency. At a frequency of 6 Hz, the robotic fish achieved a swimming speed of 1.25 m/s and a steering speed of 3.2 rad/s. These findings validate the design feasibility and multi-mode motion performance of the robotic fish, providing a theoretical foundation and computational support for the optimization and motion control of the physical prototype of the bionic robotic fish.

Key words: undulating fin, bionic robot, computational fluid dynamics, dynamic mesh, motion control

中图分类号: