欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1153-1160.DOI: 10.11996/JG.j.2095-302X.2025061153

• 制造产品核心工业软件 • 上一篇    下一篇

减缩积分微极六面体有限单元的开发与应用验证

周天齐1(), 丁军1,2(), 姚宇2   

  1. 1 中国船舶科学研究中心江苏 无锡 214000
    2 太湖深海技术科学实验室江苏 无锡 214000
  • 收稿日期:2025-08-30 接受日期:2025-11-05 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:丁军(1986-),男,研究员,博士。主要研究方向为船舶与海洋结构物设计制造等。E-mail:dingjun@cssrc.com.cn
  • 第一作者:周天齐(1999-),男,硕士研究生。主要研究方向为船舶与海洋结构物设计制造。E-mail:836282696@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFB3306200)

Development of reduced integration micropolar hexahedron finite element and application verification

ZHOU Tianqi1(), DING Jun1,2(), YAO Yu2   

  1. 1 China Ship Scientific Research Center, Wuxi Jiangsu 214000, China
    2 Taihu Laboratory of Deepsea Technological Science, Wuxi Jiangsu 214000, China
  • Received:2025-08-30 Accepted:2025-11-05 Published:2025-12-30 Online:2025-12-27
  • First author:ZHOU Tianqi (1999-), master student. His main research interests cover design and manufacturing of ships and ocean structures. E-mail:836282696@qq.com
  • Supported by:
    The National Key Research and Development Program of China(2022YFB3306200)

摘要:

微极弹性有限元法在分析具有复杂微结构的材料上有着广泛应用。针对现有实现通常采用完全积分方案而导致的计算效率低以及弯曲工况下出现剪切锁定的问题,提出一种通用高效的缩减积分一阶六面体微极有限单元,并通过海洋结构物通用分析软件SAM进行算例验证。单元算法结合标准拉格朗日插值和均匀应变与曲率公式,能够通过单元分片检验并保证畸形单元计算的准确性。同时,引入一种人工刚度方法,有效抑制缩减积分微极单元的位移和旋转沙漏失稳模式。通过数值验证,包括力和位移分片检验确认单元的收敛性,悬臂梁纯弯曲测试评估单元在剪切锁定问题上的改善效果,以及对船舶常用夹芯结构进行振动响应模态分析,验证了该单元在船舶结构有限元分析中相较于传统实体单元的有效性和优势。

关键词: 微极弹性理论, 有限单元开发, 减缩积分法, 沙漏稳定技术, 数值验证

Abstract:

The micropolar elastic finite element method has found extensive applications in analyzing materials with complex microstructures. To address the problems of low computational efficiency and shear locking under bending conditions caused by the fully integrated scheme commonly adopted in existing implementations, a universal and efficient reduced-integration first-order hexahedral micropolar finite element was proposed and verified using SAM, a general analysis software for marine structures. The element algorithm, combined with the standard Lagrange interpolation and uniform-strain and curvature formulas, passed the element patch test and ensured the calculation accuracy for distorted elements. Additionally, an artificial stiffness method was introduced to effectively suppress displacement and rotational hourglass instability modes in the reduced-integration micropolar elements. Numerical validation, including force and displacement patch tests for convergence, cantilever-beam tests for shear locking, and modal analysis of vibration responses of sandwich structures used in shipbuilding, demonstrated the proposed element’s effectiveness and advantages over traditional solid elements in finite-element analysis of ship structures.

Key words: micropolar elasticity theory, development of finite element, reduced integration, hourglass instabilities, numerical validations

中图分类号: