摘 要:利用三角函数构造了两个含参数的函数组,它们分别由6 个、7 个函数组#br# 成,分析了这两个函数组的性质。由这两组函数定义了两种新的样条曲线,它们分别具有与#br# 五次、六次B 样条曲线相同的结构。新曲线在继承B 样条曲线基本性质的同时,又具备了#br# 一些新的优点。例如,在等距节点下,新曲线在节点处均可以达到C5 连续,而且在不改变#br# 控制顶点的情况下,新曲线的形状均可以通过改变形状参数的值进行调整。另外,给出了使#br# 新曲线插值于控制多边形首末端点的方法,以及构造闭曲线的方法等,文中的图例说明了新#br# 方法的正确性和可行性。#br# 关 键 词:曲线设计;三角函数;样条曲线;形状参数;连续性
Abstract: Using trigonometric functions, two groups of functions with parameters are#br# constructed, which consist of six and seven functions respectively. The properties of the two#br# groups of functions are analyzed. Based on them, two kinds of new spline curves are defined,#br# which have the same structure with quintic and sextic B-spline curves respectively. The new#br# curves not only inherit the basic properties of B-spline curve, but also have some new advantages.#br# For example, when the knot points are equidistant, the new curves can reach C5 continuous at the#br# knot points, and the shape of the new curves can be adjusted by changing the value of the shape#br# parameter with the control points unchanged. In addition, the methods of making the new curves#br# interpolating the first and end points of the control polygon, and the methods of constructing#br# closed curves, etc, are given. The examples in the paper show the new method is correct and#br# feasible.#br# Key words: curve design; trigonometric function; spline curve; shape parameter; continuity
摘要: 利用三角函数构造了两个含参数的函数组,它们分别由6 个、7 个函数组
成,分析了这两个函数组的性质。由这两组函数定义了两种新的样条曲线,它们分别具有与
五次、六次B 样条曲线相同的结构。新曲线在继承B 样条曲线基本性质的同时,又具备了
一些新的优点。例如,在等距节点下,新曲线在节点处均可以达到C5 连续,而且在不改变
控制顶点的情况下,新曲线的形状均可以通过改变形状参数的值进行调整。另外,给出了使
新曲线插值于控制多边形首末端点的方法,以及构造闭曲线的方法等,文中的图例说明了新
方法的正确性和可行性。