图学学报 ›› 2024, Vol. 45 ›› Issue (1): 14-25.DOI: 10.11996/JG.j.2095-302X.2024010014
收稿日期:
2023-08-13
接受日期:
2023-10-31
出版日期:
2024-02-29
发布日期:
2024-02-29
通讯作者:
穆太江(1989-),男,助理研究员,博士。主要研究方向为计算图形学、可视媒体学习、场景重建与理解等。第一作者:
黄家晖(1997-),男,博士。主要研究方向为计算机图形学与三维视觉。E-mail:huangjh.work@outlook.com
Received:
2023-08-13
Accepted:
2023-10-31
Published:
2024-02-29
Online:
2024-02-29
First author:
HUANG Jiahui (1997-), Ph.D. His main research interests cover computer graphics and 3D vision. E-mail:huangjh.work@outlook.com
摘要:
三维重建技术旨在通过传感器输入,恢复所观测场景的数字化三维表示,是计算机图形学与视觉领域的重要研究方向,在可视化、模拟、路线规划等各类任务上都有重要应用。相比于静态场景,动态场景额外引入了时间维度,对应的重建任务不仅需要重构每帧细节几何,还需刻画目标随着时间变化的趋势与关联关系用于下游分析任务,为重建算法设计带来了更大的挑战。然而,目前学界就动态场景重建的讨论依然仅处于起步阶段,且关于现有方法的系统性总结也较为欠缺。为了填补上述空缺、进一步启发算法设计,对学界当前最新的动态三维场景重建技术进行整理和归纳,对动态三维场景重建问题及其通用求解框架进行一般性的定义,从动态三维表示方式、优化框架方面对已有技术进行综述,并针对结构化的特殊场景讨论对应的重建方法与处理方式。最终,介绍相关数据集,并对动态三维场景重建现存的问题进行分析总结,对未来工作进行展望。
中图分类号:
黄家晖, 穆太江. 动态三维场景重建研究综述[J]. 图学学报, 2024, 45(1): 14-25.
HUANG Jiahui, MU Taijiang. A survey of dynamic 3D scene reconstruction[J]. Journal of Graphics, 2024, 45(1): 14-25.
图1 不同动态三维表示方式图示((a)体素网格与变形场;(b)时空点云;(c)神经隐式场)
Fig. 1 Illustration of different dynamic 3D representations ((a) Voxel grid and deformation field; (b) Spatial-temporal point cloud; (c) Neural implicit field)
方法名称 | 发表年份 | PSNR |
---|---|---|
Neural 3D Video[ | CVPR 2022 | 29.6 |
NeRFPlayer[ | TVCG 2023 | 30.7 |
StreamRF[ | NeurIPS 2022 | 28.3 |
HyperReel[ | CVPR 2023 | 31.1 |
表1 不同动态重建方法效果对比
Table 1 Performance comparison of different 3D dynamic reconstruction algorithms
方法名称 | 发表年份 | PSNR |
---|---|---|
Neural 3D Video[ | CVPR 2022 | 29.6 |
NeRFPlayer[ | TVCG 2023 | 30.7 |
StreamRF[ | NeurIPS 2022 | 28.3 |
HyperReel[ | CVPR 2023 | 31.1 |
图3 动态重建方法效果示意(前两行为HyperReel[50]效果;最后一行为NeRFPlayer[51]效果,左半部分为真值,右半部分为该方法结果。图片均引用自原文)
Fig. 3 Qualitative results of dynamic NeRF methods (the first two rows are from HyperReel[50], and the last row is from NeRFPlayer[51], with result on the right and ground truth on the left)
图4 ClusterVO[71]在室内与室外多刚体场景下的结果(上:室内2个水瓶运动场景的运动分割及动态地图;下:室外驾驶场景的分割及动态地图)
Fig. 4 Results of ClusterVO in indoor and outdoor multibody scenes (upper row: motion segmentation and reconstructed dynamic map of an indoor two-bottle movement scene; lower row: segmentation and reconstructed dynamic map of an outdoor driving scene)
[1] | NEWCOMBE R A, FOX D, SEITZ S M. DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 343-352. |
[2] | GAO W, TEDRAKE R. SurfelWarp: Efficient non-volumetric single view dynamic reconstruction[EB/OL]. [2023-07-19]. https://arxiv.org/abs/1904.13073. |
[3] | PARK S, SON M, JANG S, et al. Temporal Interpolation is all You Need for Dynamic Neural Radiance Fields[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4212-4221. |
[4] | GUO K W, XU F, YU T, et al. Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera[J]. ACM Transactions on Graphics, 36(3): 32:1-32:13. |
[5] | YU T, GUO K W, XU F, et al. BodyFusion: real-time capture of human motion and surface geometry using a single depth camera[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 910-919. |
[6] | BOŽIČ A, ZOLLHÖFER M, THEOBALT C, et al. DeepDeform: learning non-rigid RGB-D reconstruction with semi-supervised data[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 7000-7010. |
[7] | TEED Z, DENG J. DROID-SLAM: deep visual SLAM for monocular, stereo, and RGB-D cameras[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2108.10869.pdf. |
[8] | HUANG J H, HUANG S S, SONG H X, et al. DI-fusion: online implicit 3D reconstruction with deep priors[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 8928-8937. |
[9] | ZHU Z H, PENG S Y, LARSSON V, et al. NICE-SLAM: neural implicit scalable encoding for SLAM[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12776-12786. |
[10] | ZHANG J, HENEIN M, MAHONY R, et al. VDO-SLAM: a visual dynamic object-aware SLAM system[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2005.11052.pdf. |
[11] |
BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083.
DOI URL |
[12] |
INGALE A K, J D U. Real-time 3D reconstruction techniques applied in dynamic scenes: a systematic literature review[J]. Computer Science Review, 2021, 39: 100338.
DOI URL |
[13] | PENG S D, YAN Y Z, SHUAI Q, et al. Representing volumetric videos as dynamic MLP maps[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4252-4262. |
[14] | WANG L, HU Q, HE Q H, et al. Neural residual radiance fields for streamably free-viewpoint videos[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 76-87. |
[15] | CHOY C, GWAK J, SAVARESE S. 4D spatio-temporal ConvNets:minkowski convolutional neural networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3070-3079. |
[16] | CURLESS B, LEVOY M. A volumetric method for building complex models from range images[C]// The 23rd annual conference on Computer graphics and interactive techniques. New York: ACM, 1996: 303-312. |
[17] | YU A, LI R L, TANCIK M, et al. PlenOctrees for real-time rendering of neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5732-5741 |
[18] | KIM D, LEE M, MUSETH K. NeuralVDB: high-resolution sparse volume representation using hierarchical neural networks[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2208.04448.pdf. |
[19] | IZADI S, KIM D, HILLIGES O, et al. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[C]// The 24th annual ACM symposium on User interface software and technology. New York: ACM, 2011: 559-568. |
[20] | SUN C, SUN M, CHEN H T. Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5449-5459. |
[21] | DOU M S, DAVIDSON P, FANELLO S R, et al. Motion2fusion: real-time volumetric performance capture[J]. ACM Transactions on Graphics, 36(6)Article No. 246, |
[22] | DOU M S, KHAMIS S, DEGTYAREV Y, et al. Fusion4D: real-time performance capture of challenging scenes[J]. ACM Transactions on Graphics, 35(4): 114:1-114:13. |
[23] | BOULCH A, MARLET R. POCO: point convolution for surface reconstruction[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 6292-6304. |
[24] | RÜCKERT D, FRANKE L, STAMMINGER M. ADOP: approximate differentiable one-pixel point rendering[J]. ACM Transactions on Graphics, 41(4): 99:1-99:14. |
[25] | WILLIAMS F, GOJCIC Z, KHAMIS S, et al. Neural fields as learnable kernels for 3D reconstruction[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 18479-18489. |
[26] | RAKHIMOV R, ARDELEAN A T, LEMPITSKY V, et al. NPBG: accelerating neural point-based graphics[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 15948-15958. |
[27] | WITTNER C, SCHAUERTE B, STIEFELHAGEN R. What’s the point? frame-wise pointing gesture recognition with latent-dynamic conditional random fields[EB/OL]. [2023-07- 19]. https://arxiv.org/abs/1510.05879.pdf. |
[28] | LOMBARDI S, SIMON T, SCHWARTZ G, et al. Mixture of volumetric primitives for efficient neural rendering[J]. ACM Transactions on Graphics, 40(4): 59:1-59:13. |
[29] | KERBL B, KOPANAS G, LEIMKUEHLER T, et al. 3D Gaussian splatting for real-time radiance field rendering[J]. ACM Transactions on Graphics, 42(4): 139:1-139:14. |
[30] | COLLET A, CHUANG M, SWEENEY P, et al. High-quality streamable free-viewpoint video[J]. ACM Transactions on Graphics, 34(4): 69:1-69:13. |
[31] | PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 165-174. |
[32] | MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 4455-4465. |
[33] |
HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
DOI URL |
[34] | TANCIK M, SRINIVASAN P P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 7537-7547. |
[35] | YU Z H, PENG S Y, NIEMEYER M, et al. MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2206.00665.pdf. |
[36] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]// European Conference on Computer Vision. Cham: Springer, 2020: 405-421. |
[37] | BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5835-5844. |
[38] | HUANG X, TANG L L, LIU Y, et al. NIST: learning neural implicit surfaces and textures for multi-view reconstruction[C]// Advances in Smart Vehicular Technology, Transportation, Communication and Applications. Singapore: Springer, 2023: 385-395. |
[39] | LONG X X, LIN C, WANG P, et al. SparseNeuS: fast generalizable neural surface reconstruction from sparse views[C]// European Conference on Computer Vision. Cham: Springer, 2022: 210-227. |
[40] | GU J T, TREVITHICK A, LIN K E, et al. NerfDiff: single-image view synthesis with NeRF-guided distillation from 3D-aware diffusion[C]// The 40th International Conference on Machine Learning. New York: ACM, 2023: 11808-11826. |
[41] | YANG G D, KUNDU A, GUIBAS L J, et al. Learning a diffusion prior for NeRFs[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2304.14473.pdf. |
[42] | NIEMEYER M, MESCHEDER L, OECHSLE M, et al. Occupancy flow: 4D reconstruction by learning particle dynamics[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 5378-5388. |
[43] | PUMAROLA A, CORONA E, PONS-MOLL G, et al. D-NeRF: neural radiance fields for dynamic scenes[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10313-10322. |
[44] | LI Z Q, NIKLAUS S, SNAVELY N, et al. Neural scene flow fields for space-time view synthesis of dynamic scenes[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 6498-6508. |
[45] | MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41(4): 1-15. |
[46] | PALAFOX P, BOŽIČ A, THIES J, et al. NPMs: neural parametric models for 3D deformable shapes[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 12675-12685. |
[47] | CAO A, JOHNSON J. HexPlane: a fast representation for dynamic scenes[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 130-141 |
[48] | CHEN A P, XU Z X, GEIGER A, et al. TensoRF: tensorial radiance fields[C]// European Conference on Computer Vision. Cham: Springer, 2022: 333-350. |
[49] | LI T Y, SLAVCHEVA M, ZOLLHOEFER M, et al. Neural 3D video synthesis from multi-view video[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5511-5521. |
[50] | ATTAL B, HUANG J B, RICHARDT C, et al. HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16610-16620. |
[51] |
SONG L C, CHEN A P, LI Z, et al. NeRFPlayer: a streamable dynamic scene representation with decomposed neural radiance fields[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29: 2732-2742.
DOI URL |
[52] | LI L, SHEN Z, WANG Z, et al. Streaming radiance fields for 3D video synthesis[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2210.14831. |
[53] | LIU J W, CAO Y P, MAO W J, et al. DeVRF: fast deformable voxel radiance fields for dynamic scenes[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2205.15723.pdf. |
[54] | PAN X R, LAI Z H, SONG S J, et al. ActiveNeRF: learning where to see with uncertainty estimation[C]// European Conference on Computer Vision. Cham: Springer, 2022: 230-246. |
[55] | NIEMEYER M, BARRON J T, MILDENHALL B, et al. RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5470-5480. |
[56] | TRUONG P, RAKOTOSAONA M J, MANHARDT F, et al. SPARF: neural radiance fields from sparse and noisy poses[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4190-4200. |
[57] | VERBIN D, HEDMAN P, MILDENHALL B, et al. Ref-NeRF: structured view-dependent appearance for neural radiance fields[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5481-5490. |
[58] | LI Z Q, WANG Q Q, COLE F, et al. DynIBaR: neural dynamic image-based rendering[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4273-4284. |
[59] | MEULEMAN A, LIU Y L, GAO C, et al. Progressively optimized local radiance fields for robust view synthesis[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2023: 16539-16548. |
[60] | LIU H T D, WILLIAMS F, JACOBSON A, et al. Learning smooth neural functions via lipschitz regularization[C]// Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings. New York, NY, USA: ACM, 2022: 31:1-31:13. |
[61] | DUCHI J C, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res, 2011, 12: 2121-2159. |
[62] | KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. [2023-07-19]. https://arxiv.org/pdf/1412.6980v8.pdf. |
[63] | YU T, ZHENG Z R, GUO K W, et al. Function4D: real-time human volumetric capture from very sparse consumer RGBD sensors[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 5742-5752. |
[64] |
YU T, ZHAO J H, ZHENG Z R, et al. DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2523-2539.
DOI PMID |
[65] |
HUANG J H, BIRDAL T, GOJCIC Z, et al. Multiway non-rigid point cloud registration via learned functional map synchronization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2038-2053.
DOI URL |
[66] |
COSTEIRA J P, KANADE T. A multibody factorization method for independently moving objects[J]. International Journal of Computer Vision, 1998, 29(3): 159-179.
DOI URL |
[67] | XU B B, LI W B, TZOUMANIKAS D, et al. MID-fusion: octree-based object-level multi-instance dynamic SLAM[C]// 2019 International Conference on Robotics and Automation. New York: IEEE Press, 2019: 5231-5237. |
[68] | HUANG J H, YANG S, ZHAO Z S, et al. ClusterSLAM: a SLAM backend for simultaneous rigid body clustering and motion estimation[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 5874-5883. |
[69] |
BESCOS B, CAMPOS C, TARDÓS J D, et al. DynaSLAM II: tightly-coupled multi-object tracking and SLAM[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5191-5198.
DOI URL |
[70] | BALLESTER I, FONTÁN A, CIVERA J, et al. DOT: dynamic object tracking for visual SLAM[C]// 2021 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2021: 11705-11711. |
[71] | HUANG J H, YANG S, MU T J, et al. ClusterVO: clustering moving instances and estimating visual odometry for self and surroundings[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2165-2174. |
[72] |
LONG R, RAUCH C, ZHANG T W, et al. RigidFusion: robot localisation and mapping in environments with large dynamic rigid objects[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3703-3710.
DOI URL |
[73] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-07-19]. https://arxiv.org/abs/1804.02767.pdf. |
[74] | DENG C Y, LEI J H, SHEN B K, et al. Banana: Banach fixed-point network for pointcloud segmentation with inter-part equivariance[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2305.16314.pdf. |
[75] | LEI J H, DENG C Y, SCHMECKPEPER K, et al. EFEM: equivariant neural field expectation maximization for 3D object segmentation without scene supervision[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4902-4912. |
[76] | LI P L, QIN T, SHEN S J. Stereo vision-based semantic 3D object and ego-motion tracking for autonomous driving[M]// Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 664-679. |
[77] | REDDY N D, VO M, NARASIMHAN S G. CarFusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 1906-1915. |
[78] | RODDICK T, BIGGS B, REINO D O, et al. On the road to large-scale 3D monocular scene reconstruction using deep implicit functions[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 2875-2884. |
[79] | HUANG S Y, GOJCIC Z, HUANG J H, et al. Dynamic 3D scene analysis by Point cloud accumulation[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 674-690. |
[80] | HU Y H, YANG J Z, CHEN L, et al. Planning-oriented autonomous driving[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 17853-17862. |
[81] | LI C, ZHAO Z H, GUO X H. ArticulatedFusion: real-time reconstruction of motion, geometry and segmentation using a single depth camera[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 324-340. |
[82] | NUNES U M, DEMIRIS Y. Online unsupervised learning of the 3D kinematic structure of arbitrary rigid bodies[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 3808-3816. |
[83] | HUANG J H, WANG H, BIRDAL T, et al. MultiBodySync: multi-body segmentation and motion estimation via 3D scan synchronization[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7104-7114. |
[84] | XIANG F B, QIN Y Z, MO K C, et al. SAPIEN: a SimulAted part-based interactive ENvironment[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11094-11104. |
[85] | MU J T, QIU W C, KORTYLEWSKI A, et al. A-SDF: learning disentangled signed distance functions for articulated shape representation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 12981-12991. |
[86] | LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 34(6): 248:1-248:16. |
[87] | OSMAN A A A, BOLKART T, BLACK M J. STAR: sparse trained articulated human body regressor[C]// Computer Vision - ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VI. New York: ACM, 2020: 598-613. |
[88] | ROMERO J, TZIONAS D, BLACK M J. Embodied hands: modeling and capturing hands and bodies together[J]. [2023-07-19]. https://arxiv.org/abs/2201.02610. |
[89] | XIU Y L, YANG J L, TZIONAS D, et al. ICON: implicit clothed humans obtained from normals[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 13286-13296. |
[90] | XIU Y L, YANG J L, CAO X, et al. ECON: explicit Clothed humans Optimized via Normal integration[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 512-523. |
[91] | REMPE D, BIRDAL T, HERTZMANN A, et al. HuMoR: 3D human motion model for robust pose estimation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 11468-11479. |
[92] |
SONG H X, HUANG J H, CAO Y P, et al. HDR-Net-Fusion: real-time 3D dynamic scene reconstruction with a hierarchical deep reinforcement network[J]. Computational Visual Media, 2021, 7(4): 419-435.
DOI |
[93] | XU H Y, ALLDIECK T, SMINCHISESCU C. H-NeRF: neural radiance fields for rendering and temporal reconstruction of humans in motion[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2110.13746.pdf. |
[94] | ZHANG J Y, PEPOSE S, JOO H, et al. Perceiving 3D human-object spatial arrangements from a single image in the wild[M]// Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 34-51. |
[95] | XU X, JOO H, MORI G, et al. D3D-HOI: dynamic 3D human-object interactions from videos[EB/OL]. [2023-07-19]. https://arxiv.org/abs/2108.08420.pdf. |
[96] | XIE X H, BHATNAGAR B L, PONS-MOLL G. CHORE:contact, human and Object reconstruction from a Single RGB image[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 125-145. |
[97] | BROXTON M, FLYNN J, OVERBECK R, et al. Immersive light field video with a layered mesh representation[J]. ACM Transactions on Graphics, 39(4): 86:1-86:15. |
[98] | PARK K, SINHA U, BARRON J T, et al. Nerfies: deformable neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5845-5854. |
[99] | YOON J S, KIM K, GALLO O, et al. Novel view synthesis of dynamic scenes with globally coherent depths from a monocular camera[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5335-5344. |
[100] | BOGO F, ROMERO J, PONS-MOLL G, et al. Dynamic FAUST: registering human bodies in motion[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5573-5582. |
[101] | RANJAN A, BOLKART T, SANYAL S, et al. Generating 3D faces using convolutional mesh autoencoders[M]// Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 725-741. |
[102] | RANJAN A, BOLKART T, SANYAL S, et al. Numerical geometry of non-rigid shapes[DB/OL]. [2023-07-24]. https://link.springer.com/book/10.1007/978-0-387-73301-2. |
[103] | SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2443-2451. |
[104] | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2012: 3354-3361. |
[105] | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11618-11628. |
[1] | 王浩淼, 桑胜举, 段晓东, 张伟华, 陶体伟, 马婷. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182. |
[2] | 林莹莹, 蔡睿凡, 朱雨真, 唐祥峻, 金小刚. 基于Leap Motion 的虚拟现实陶艺体验系统[J]. 图学学报, 2020, 41(1): 57-65. |
[3] | 王 茹, 权超超 . 公路立交 BIM 参数化快速精确建模方法研究[J]. 图学学报, 2019, 40(4): 766-770. |
[4] | 李占利, 高天宇, 李洪安, 武璠菲. 基于牙冠与牙根特征的牙齿建模方法[J]. 图学学报, 2017, 38(4): 483-488. |
[5] | 缪 盾. 基于BIM 的建筑工程制图教学体系构建[J]. 图学学报, 2016, 37(6): 826-. |
[6] | 赵海峰, 杜廷娜, 叶荣波, 赵海波. 心形线双曲拱坝三维建模[J]. 图学学报, 2014, 35(2): 195-199. |
[7] | 李 林, 张晓伟, 高青风. 输电塔架参数化三维建模方法研究与实现[J]. 图学学报, 2014, 35(1): 46-51. |
[8] | 吕希奎, 周小平, 贾晓秋. 高速列车运动仿真可视化建模研究[J]. 图学学报, 2013, 34(1): 87-91. |
[9] | 吕希奎, 周小平, 张学军, 周 亮. 基于参数化技术的隧道三维建模方法[J]. 图学学报, 2011, 32(2): 26-30. |
[10] | 昂雪野, 管莉娜, 丁建梅. 基于AutoCAD的阿基米德蜗杆参数化造型程序设计[J]. 图学学报, 2010, 31(3): 27-31. |
[11] | 刘晓平, 钱晶晶, 余 烨, 罗月童. 面向对象模板的特色建筑造型[J]. 图学学报, 2010, 31(2): 68-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||