[1] |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
|
|
LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600 (in Chinese).
|
[2] |
TANG J, ZHANG J, YAO L M, et al. ArnetMiner: extraction and mining of academic social networks[C]// The 14th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2008: 990-998.
|
[3] |
BALTRUSAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443.
DOI
URL
|
[4] |
陈烨, 周刚, 卢记仓. 多模态知识图谱构建与应用研究综述[J]. 计算机应用研究, 2021, 38 (12): 3535-3543.
|
|
CHEN Y, ZHOU G, LU J C. Survey on construction and application research for multi-modal knowledge graphs[J]. Application Research of Computers, 2021, 38 (12): 3535-3543 (in Chinese).
|
[5] |
ZHANG C, YANG Z C, HE X D, et al. Multimodal intelligence: representation learning, information fusion, and applications[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3): 478-493.
DOI
URL
|
[6] |
付雷杰, 曹岩, 白瑀, 等. 国内垂直领域知识图谱发展现状与展望[J]. 计算机应用研究, 2021, 38 (11): 3201-3214.
|
|
FU L J, CAO Y, BAI Y, et al. Development status and prospect of vertical domain knowledge graph in China[J]. Application Research of Computers, 2021, 38 (11): 3201-3214 (in Chinese).
|
[7] |
ESSAM M, ELDAWLATLY S, ABBAS H. Contextualized word representations for self-attention network[C]// 2018 13th International Conference on Computer Engineering and Systems. New York: IEEE Press, 2018: 116-121.
|
[8] |
邱凌, 张安思, 李少波, 等. 航空制造知识图谱构建研究综述[J]. 计算机应用研究, 2022, 39 (4): 968-977.
|
|
QIU L, ZHANG A S, LI S B, et al. Survey on building knowledge graphs for aerospace manufacturing[J]. Application Research of Computers, 2022, 39 (4): 968-977 (in Chinese).
|
[9] |
YANG X T, RAMESH P, CHITTA R, et al. Deep multimodal representation learning from temporal data[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5066-5074.
|
[10] |
BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
DOI
PMID
|
[11] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778.
|
[12] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-12-10]. http://arxiv.org/abs/1810.04805v2.
|
[13] |
彭宇新, 綦金玮, 黄鑫. 多媒体内容理解的研究现状与展望[J]. 计算机研究与发展, 2019, 56(1): 183-208.
|
|
PENG Y X, QI J W, HUANG X. Current research status and prospects on multimedia content understanding[J]. Journal of Computer Research and Development, 2019, 56(1): 183-208 (in Chinese).
|
[14] |
王树徽, 闫旭, 黄庆明. 跨媒体分析与推理技术研究综述[J]. 计算机科学, 2021, 48(3): 79-86.
DOI
|
|
WANG S H, YAN X, HUANG Q M. Overview of research on cross-media analysis and reasoning technology[J]. Computer Science, 2021, 48(3): 79-86 (in Chinese).
|