欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (2): 300-307.DOI: 10.11996/JG.j.2095-302X.2024020300

• 数字化设计与制造专刊 • 上一篇    下一篇

基于知识图谱的航空多模态数据组织与知识发现技术研究

何柳(), 安然, 刘姝妍, 李润岐, 陶剑, 曾照洋()   

  1. 中国航空综合技术研究所,北京 100028
  • 收稿日期:2024-01-05 修回日期:2024-01-26 出版日期:2024-04-30 发布日期:2024-04-29
  • 通讯作者: 曾照洋(1979-),男,研究员,硕士。主要研究方向为质量工程、可靠性和保障等。E-mail:zengzy003@avic.com
  • 作者简介:何柳(1988-),男,高级工程师,硕士。主要研究方向为人工智能、计算机视觉和多模态机器学习。E-mail:hel054@avic.com
  • 基金资助:
    工信部民机专项科研项目(MJZ2-3N21)

Research on knowledge graph-based aviation multi-modal data organization and discovery method

HE Liu(), AN Ran, LIU Shuyan, LI Runqi, TAO Jian, ZENG Zhaoyang()   

  1. China Aero-Polytechnology Establishment, Beijing 100028, China
  • Received:2024-01-05 Revised:2024-01-26 Online:2024-04-30 Published:2024-04-29
  • Contact: ZENG Zhaoyang (1979-), researcher, master. His main research interests cover quality engineering, reliability and maintainability, etc. E-mail:zengzy003@avic.com
  • About author:HE Liu (1988-), senior engineer, master. His main research interests cover artificial intelligence, computer vision and multimodal machine learning. E-mail:hel054@avic.com
  • Supported by:
    Ministry of Industry and Information Technology Foundation(MJZ2-3N21)

摘要:

航空产品在研制使用生命周期过程中产生的数据呈现出多源多模态的特性,面向此类数据进行知识工程建设时,传统基于关键词的文本检索方式已经无法满足科研人员在科研过程中对知识的获取需求。知识图谱作为当前人工智能领域对知识表示的一种方式,可以对知识单元以及数据之间的体系性和关系性进行充分表达和规范化存储,是垂直领域数据组织与知识发现服务的一种有效途径。因此提出以知识图谱作为航空领域知识表达模型,以标准知识单元作为数据载体,对科研人员的业务思维进行建模,同时利用深度神经网络作为多模态数据的特征编码器,构建适合机器理解与计算的特征向量,结合两者的特点构建面向多模态数据的搜索、推荐引擎。在此技术基础上设计系统架构并实现知识发现平台,将多模态数据在知识层面进行组织索引,满足航空科研人员的多模态知识检索需求。

关键词: 数据组织, 知识发现, 知识图谱, 多模态, 跨模态检索

Abstract:

The data generated in the life cycle of aviation products shows the characteristics of multi-source and multi-modal. When constructing knowledge engineering for such data, the traditional text retrieval method based on keywords has become inadequate to meet the needs of researchers for knowledge acquisition in the process of scientific research. As a current method for knowledge representation in the specific domain of artificial intelligence, knowledge graph provides an adequate expression and standardized storage of the systematic and relational aspects between knowledge units and data. It served as an effective means of organizing domain-specific data and facilitating knowledge discovery services. Therefore, to reconstruct the operational thinking of researchers, it was proposed to use the knowledge graph as the knowledge expression model in the aviation domain, employing the standard knowledge unit as data carriers. Furthermore, the deep neural network was utilized as the feature encoder of multi-modal data, generating feature vectors for machine understanding and computation. By combining these two key technologies, a search and recommendation engine was built for multi-modal data. Building upon this technological foundation, a system architecture was designed and a knowledge discovery platform was implemented. This platform organized and indexed multi-modal data at the knowledge level, meeting the multi-modal knowledge retrieval needs of aviation researchers.

Key words: data organization, knowledge discovery, knowledge graph, multi-modal, cross-modal retrieval

中图分类号: