[1] |
TIAN Y T, ZHANG H W, LIU Y B, et al. Recovering 3D human mesh from monocular images: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15406-15425.
|
[2] |
YE V, PAVLAKOS G, MALIK J, et al. Decoupling human and camera motion from videos in the wild[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 21222-21232.
|
[3] |
KANAZAWA A, BLACK M J, JACOBS D W, et al. End-to-end recovery of human shape and pose[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7122-7131.
|
[4] |
KANAZAWA A, ZHANG J Y, FELSEN P, et al. Learning 3D human dynamics from video[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5614-5623.
|
[5] |
YAO W, ZHANG H W, SUN Y L, et al. STAF:3D human mesh recovery from video with spatio-temporal alignment fusion[EB/OL]. [2024-05-05]. https://arxiv.org/abs/2401.01730.pdf.
|
[6] |
SHEN X L, YANG Z X, WANG X H, et al. Global-to-local modeling for video-based 3D human pose and shape estimation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 8887-8896.
|
[7] |
YANG S, HENG W, LIU G, et al. Capturing the motion of every joint:3D human pose and shape estimation with independent tokens[EB/OL]. [2024-05-05]. https://arxiv.org/pdf/2303.00298.pdf.
|
[8] |
ZHANG B Y, MA K H, WU S P, et al. Two-stage co-segmentation network based on discriminative representation for recovering human mesh from videos[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 5662-5670.
|
[9] |
LEE M, LEE H, KIM B, et al. UNSPAT: Uncertainty-guided spatio-temporal transformer for 3D human pose and shape estimation on videos[C]// 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2024: 3004-3013.
|
[10] |
KOCABAS M, ATHANASIOU N, BLACK M J. Vibe: Video inference for human body pose and shape estimation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5253-5263.
|
[11] |
MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: Archive of motion capture as surface shapes[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5442-5451.
|
[12] |
LUO Z Y, GOLESTANEH S A, KITANI K M. 3D human motion estimation via motion compression and refinement[C]// Computer Vision - ACCV 2020: 15th Asian Conference. New York: ACM, 2020: 324-340.
|
[13] |
CHOI H, MOON G, CHANG J Y, et al. Beyond static features for temporally consistent 3D human pose and shape from a video[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 1964-1973.
|
[14] |
ZHU W T, MA X X, LIU Z Y, et al. Motionbert: a unified perspective on learning human motion representations[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 15085-15099.
|
[15] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
|
[16] |
王玉萍, 曾毅, 李胜辉, 等. 一种基于Transformer的三维人体姿态估计方法[J]. 图学学报, 2023, 44(1): 139-145.
DOI
|
|
WANG Y P, ZENG Y, LI S H, et al. A Transformer-based 3D human pose estimation method[J]. Journal of Graphics, 2023, 44(1): 139-145 (in Chinese).
|
[17] |
YOU Y X, LIU H, WANG T, et al. Co-evolution of pose and mesh for 3D human body estimation from video[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 14963-14973.
|
[18] |
吕衡, 杨鸿宇. 一种基于时空运动信息交互建模的三维人体姿态估计方法[J]. 图学学报, 2024, 45(1): 159-168.
DOI
|
|
LV H, YANG H Y. A 3D human pose estimation approach based on spatio-temporal motion interaction modeling[J]. Journal of Graphics, 2024, 45(1): 159-168 (in Chinese).
DOI
|
[19] |
WAN Z N, LI Z J, TIAN M Q, et al. Encoder-decoder with multi-level attention for 3D human shape and pose estimation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 13033-13042.
|
[20] |
WEI W L, LIN J C, LIU T L, et al. Capturing humans in motion: Temporal-attentive 3D human pose and shape estimation from monocular video[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 13211-13220.
|
[21] |
JIN K M, LIM B S, LEE G H, et al. Kinematic-aware hierarchical attention network for human pose estimation in videos[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 5725-5734.
|
[22] |
CUI M M, ZHANG K B, SUN Z N. Graph and Skipped Transformer:Exploiting spatial and temporal modeling capacities for efficient 3D human pose estimation[EB/OL]. [2024-05-05]. https://arxiv.org/pdf/2407.02990.pdf.
|
[23] |
TANG Z H, QIU Z F, HAO Y B, et al. 3D human pose estimation with spatio-temporal criss-cross attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4790-4799.
|
[24] |
XU J L, GUO Y J, PENG Y X. FinePOSE: fine-grained prompt-driven 3D human pose estimation via diffusion models[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 561-570.
|
[25] |
JIAO J B, CHENG X N, CHEN W J, et al. Towards precise 3D human pose estimation with multi-perspective spatial-temporal relational transformer[EB/OL]. [2024-05-05]. https://arxiv.org/pdf/2401.16700.pdf.
|
[26] |
CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7103-7112.
|
[27] |
XU Y F, ZHANG J, ZHANG Q M, et al. Vitpose: simple vision transformer baselines for human pose estimation[J]. Advances in Neural Information Processing Systems, 2022, 35: 38571-38584.
|
[28] |
KOLOTOUROS N, PAVLAKOS G, BLACK M J, et al. Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2252-2261.
|
[29] |
IONESCU C, PAPAVA D, OLARU V, et al. Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1325-1339.
|
[30] |
MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]// 2017 IEEE/CVF International Conference on 3D Vision. New York: IEEE Press, 2017: 506-516.
|
[31] |
MARCARD T V, HENSCHEL R, BLACK M J, et al. Recovering accurate 3D human pose in the wild using imus and a moving camera[C]// Computer Vision - ECCV 2018: 15th European Conference. New York: ACM, 2018: 601-617.
|