[1] |
RODRÍGUEZ-ARIAS J P, GUTIÉRREZ VENTURINI A, PAMPÍN MARTÍNEZ M M, et al. Microtia ear reconstruction with patient-specific 3D models—a segmentation protocol[J]. Journal of Clinical Medicine, 2022, 11(13): 3591.
|
[2] |
NIGHTINGALE R C, ROSS M T, CRUZ R L J, et al. Frugal 3D scanning using smartphones provides an accessible framework for capturing the external ear[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2021, 74(11): 3066-3072.
|
[3] |
FAN X M, NIU X M, WANG Y B, et al. Comparison of three-dimensional and two-dimensional templates on auricle reconstruction in patients with unilateral microtia[J]. American Journal of Translational Research, 2019, 11(6): 3771-3778.
PMID
|
[4] |
FAN H, YU S H, WANG M C, et al. Analysis of the external acoustic meatus for ergonomic design: part I-measurement of the external acoustic meatus using casting, scanning and rapid estimation approaches[J]. Ergonomics, 2021, 64(5): 640-656.
|
[5] |
BAN K, JUNG E S. Ear shape categorization for ergonomic product design[J]. International Journal of Industrial Ergonomics, 2020, 80: 102962.
|
[6] |
LEE W, YANG X P, JUNG H, et al. Anthropometric analysis of 3D ear scans of Koreans and Caucasians for ear product design[J]. Ergonomics, 2018, 61(11): 1480-1495.
DOI
PMID
|
[7] |
ZHU Z H, JI X M, GAO Z, et al. A morphometric study of auricular concha in the population of young Chinese adults[J]. International Journal of Morphology, 2017, 35(4): 1451-1458.
|
[8] |
PAVLIDIS G, KOUTSOUDIS A, ARNAOUTOGLOU F, et al. Methods for 3D digitization of cultural heritage[J]. Journal of Cultural Heritage, 2007, 8(1): 93-98.
|
[9] |
孙启翔. 三维点云数据的孔洞修补技术研究[D]. 长春: 长春工业大学, 2024.
|
|
SUN Q X. Research on hole repairing technology for 3D point cloud data[D]. Changchun: Changchun University of Technology, 2024 (in Chinese).
|
[10] |
CHO S D, JANG J H, KIM H, et al. Earmold foreign bodies in the middle ear necessitating surgical removal: why otology specialists should screen candidates for hearing aids[J]. Clinical and Experimental Otorhinolaryngology, 2021, 14(2): 235-239.
|
[11] |
CHEN C K, HSIEH L C, CHIANG Y C, et al. Feasibility of high‐resolution computed tomography imaging for obtaining ear impressions for hearing aid fitting[J]. Otolaryngology- Head and Neck Surgery, 2019, 161(4): 666-671.
|
[12] |
NOLAN M, COMBE E C. Silicone materials for ear impressions[J]. Scandinavian Audiology, 1985, 14(1): 35-39.
PMID
|
[13] |
范然, 金小刚. 大规模点云选择及精简[J]. 图学学报, 2013, 34(3): 12-19.
|
|
FAN R, JIN X G. Selection and reduction algorithms for large point clouds[J]. Journal of Graphics, 2013, 34(3): 12-19 (in Chinese).
|
[14] |
袁天然. 三角网格模型光顺、简化和缝补技术的研究及应用[D]. 南京: 南京航空航天大学, 2007.
|
|
YUAN T R. Research & application of triangular mesh model’s hole filling, decimation and stitching algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
|
[15] |
DEMUYNCK M, DELNAVAZ A, VOIX J. Morphological analysis of the human earcanal deformations during face- related activities[J]. Applied Ergonomics, 2024, 116: 104195.
|
[16] |
FAN H, YU S H, WANG M C, et al. Analysis of the external acoustic meatus for ergonomic design: part II-anthropometric variations of the external acoustic meatus by sex, age and side in Chinese population[J]. Ergonomics, 2021, 64(5): 657-670.
|
[17] |
LEE W, JUNG H, BOK I, et al. Measurement and application of 3D ear images for earphone design[J]. Proceedings of The Human Factors and Ergonomics Society Annual Meeting, 2016, 60(1): 1053-1057.
|
[18] |
VERDAM F, TANGE R, THOMEER H. Impression material in the external and middle ear: an overview of the literature and a stepwise approach for removal[J]. The Journal of International Advanced Otology, 2016, 12(3): 345-352.
|
[19] |
LEE H M, YI K I, JUNG J H, et al. Hearing aid silicone impression material as a foreign body in the middle ear[J]. American Journal of Otolaryngology, 2017, 38(1): 108-111.
|
[20] |
YOSHIOKA S, INUZUKA E, KATO H, et al. Surgical removal of hearing aid ear mold impression material from the middle ear: a report of two cases[J]. Fujita Medical Journal, 2017, 3(3): 72-75.
|
[21] |
VAN DEN BOER C, VAN SPRONSEN E, HOLLAND C T Q, et al. Clinical approach after complicated ear mold fitting: a case series of six patients and evaluation of literature[J]. Annals of Otology, Rhinology & Laryngology, 2019, 128(12): 1141-1146.
|
[22] |
NOLAN M, COMBE E C. In vitro considerations in the production of dimensionally accurate earmoulds I.: the ear impression[J]. Scandinavian Audiology, 1989, 18(1): 35-41.
|
[23] |
AMBERG B, ROMDHANI S, VETTER T. Optimal step nonrigid ICP algorithms for surface registration[C]// 2007 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2007: 1-8.
|
[24] |
杨荣, 冯有前, 袁修久. 利用现有模型修复不完整三维模型[J]. 计算机辅助设计与图形学学报, 2015, 27(1): 98-105.
|
|
YANG R, FENG Y Q, YUAN X J. Restoration of fragmentary 3D models using existing models[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(1): 98-105 (in Chinese).
|
[25] |
吴云燕, 陈正鸣, 何坤金. 网格分割及形态参数引导的股骨模型修复[J]. 计算机辅助设计与图形学学报, 2018, 30(10): 1899-1909.
|
|
WU Y Y, CHEN Z M, HE K J, et al. Repair of defected femur models based on mesh segmentation and morphological parameters[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(10): 1899-1909 (in Chinese).
|
[26] |
ISO. ISO 15535:2023 General requirements for establishing anthropometric databases[S]. Geneva, Switzerland: ISO, 2023.
|
[27] |
WANG M C, FAN H, YU S H, et al. Analysis of the auricles and auricular shape types for ear-related wearables: a study of mainland Chinese sample aged 15-79[J]. Work, 2022, 73(1): 335-352.
DOI
PMID
|
[28] |
吴怡, 董可欣, 杨峥, 等. 不同年龄耳廓来源软骨细胞的生物学特性研究[J]. 中华整形外科杂志, 2019, 35(4): 331-340.
|
|
WU Y, DONG K X, YANG Z, et al. Biological characteristics of chondrocytes derived from auricles of different ages[J]. Chinese Journal of Plastic Surgery, 2019, 35(4): 331-340 (in Chinese).
|
[29] |
ZHAO S C, LI D G, LIU Z Z, et al. Anthropometric growth study of the ear in a Chinese population[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2018, 71(4): 518-523.
|
[30] |
GUO Z Y, LU Y G, ZHOU H L, et al. Anthropometric-based clustering of pinnae and its application in personalizing HRTFs[J]. International Journal of Industrial Ergonomics, 2021, 81: 103076.
|
[31] |
FU F, LUXIMON A, LUXIMON Y. 3D human ear modelling with parameterization technique and variation analysis[J]. Ergonomics, 2024, 67(5): 638-649.
|
[32] |
WHITE J D, ORTEGA-CASTRILLÓN A, MATTHEWS H, et al. MeshMonk: open-source large-scale intensive 3D phenotyping[J]. Scientific Reports, 2019, 9(1): 6085.
DOI
PMID
|
[33] |
BERENDS B, BIELEVELT F, SCHREURS R, et al. Fully automated landmarking and facial segmentation on 3D photographs[J]. Scientific Reports, 2024, 14(1): 6463.
DOI
PMID
|
[34] |
BAI Y K, TRAN H, DAMELIN S B, et al. Partial transport for point-cloud registration[J]. Sampling Theory, Signal Processing, and Data Analysis, 2025, 23(1): 4.
|
[35] |
LOW K L. Linear least-squares optimization for point-to-plane icp surface registration[R]. Chapel Hill: University of North Carolina, 2004.
|
[36] |
LATHAM J, LUDLOW M, MENNITO A, et al. Effect of scan pattern on complete-arch scans with 4 digital scanners[J]. The Journal of Prosthetic Dentistry, 2020, 123(1): 85-95.
|
[37] |
吴亦奇, 何嘉乐, 张甜甜, 等. 基于多重特征提取和点对应关系的三维点云非刚配准[J]. 图学学报, 2025, 46(1): 150-158.
DOI
|
|
WU Y Q, HE J L, ZHANG T T, et al. Unsupervised 3D point cloud non-rigid registration based on multi-feature extraction and point correspondence[J]. Journal of Graphics, 2025, 46(1): 150-158 (in Chinese).
DOI
|
[38] |
GIBELLI D, PALAMENGHI A, POPPA P, et al. Improving 3D-3D facial registration methods: potential role of three-dimensional models in personal identification of the living[J]. International Journal of Legal Medicine, 2021, 135(6): 2501-2507.
DOI
PMID
|
[39] |
陈国军, 曹岳, 杨静, 等. 基于形变模型的多角度三维人脸实时重建[J]. 图学学报, 2019, 40(4): 659-664.
DOI
|
|
CHEN G J, CAO Y, YANG J, et al. Real-time reconstruction of multi-angle 3D human faces based on morphable model[J]. Journal of Graphics, 2019, 40(4): 659-664 (in Chinese).
|
[40] |
REVILLA-LEÓN M, GÓMEZ-POLO M, BARMAK A B, et al. Influence of occlusal collision corrections completed by two intraoral scanners or a dental design program on the accuracy of the maxillomandibular relationship[J]. The Journal of Prosthetic Dentistry, 2024, 132(1): 191-203.
|
[41] |
SHARMA N, CAO S S, MSALLEM B, et al. Effects of steam sterilization on 3D printed biocompatible resin materials for surgical guides—an accuracy assessment study[J]. Journal of Clinical Medicine, 2020, 9(5): 1506.
|
[42] |
FAROOK T H, RASHID F, JAMAYET N B, et al. A virtual analysis of the precision and accuracy of 3-dimensional ear casts generated from smartphone camera images[J]. The Journal of Prosthetic Dentistry, 2022, 128(4): 830-836.
|