图学学报 ›› 2025, Vol. 46 ›› Issue (4): 909-918.DOI: 10.11996/JG.j.2095-302X.2025040909
收稿日期:
2024-12-02
修回日期:
2025-03-10
出版日期:
2025-08-30
发布日期:
2025-08-11
通讯作者:
郭栋(1983-),男,教授,博士。主要研究方向为智能驾驶人机交互检测技术及装备开发。E-mail:guodong@cqut.edu.cn第一作者:
柯善军(1975-),男,副教授,硕士。主要研究方向为用户体验与人机交互。E-mail:shanjunke@cqut.edu.cn
基金资助:
KE Shanjun(), WANG Yumiao, NIE Chengyang, HE Bangsheng, GUO Dong(
)
Received:
2024-12-02
Revised:
2025-03-10
Published:
2025-08-30
Online:
2025-08-11
First author:
KE Shanjun (1975-), associate professor, master. His main research interests cover user experience and human-computer interaction. E-mail:shanjunke@cqut.edu.cn
Supported by:
摘要:
为研究信息如何精准表征风险以辅助驾驶员准确感知环境,设计包含不同模态、变量和参数的信息样本进行紧迫度和扰人度感知测量实验,并根据感知测量结果,构建包含模态排序、变量选择和参数寻优的3层次车内辅助信息设计模型。首先,针对视觉、听觉和触觉模态,分别对比其各个设计变量的紧迫度感知差分灵敏度,选择差分灵敏度最高的设计变量作为该模态的风险表征变量,通过该模态的参数水平变化表征风险变化。其次,针对每个非风险表征变量,分别比较其不同参数水平的感知紧迫度与扰人度差值,并将差值最大的参数水平作为该变量的最佳参数水平,结合风险表征变量构建各个模态的辅助信息模型。然后,拟合3个模态的紧迫度和扰人度线性方程,观察同紧迫度下各个模态的扰人度差异,按照高紧迫低扰人原则进行模态优先级排序。最后,按照顺序对各个模态辅助信息模型进行叠加,形成“4级视觉闪烁频率+5级触觉震动占空比+6级听觉脉冲间隙”的多模态车内辅助信息模型。构建的车内辅助信息模型,可以实现对15级环境风险的精准表征,为驾驶员准确感知环境、保障驾驶安全提供了有益地帮助。
中图分类号:
柯善军, 王钰苗, 聂成洋, 何邦胜, 郭栋. 基于风险表征的车内辅助信息设计模型[J]. 图学学报, 2025, 46(4): 909-918.
KE Shanjun, WANG Yumiao, NIE Chengyang, HE Bangsheng, GUO Dong. Design model of in-vehicle auxiliary information based on risk representation[J]. Journal of Graphics, 2025, 46(4): 909-918.
变量 | 视觉参数 | ||||||
---|---|---|---|---|---|---|---|
图标大小/px | 24 | 36 | 48 | 60 | 72 | 84 | 96 |
闪烁频率/Hz | 1 | 2 | 5 | 10 | 20 | ||
图标颜色 | 白色 | 绿色 | 黄色 | 橙色 | 红色 |
表1 视觉变量测试表
Table 1 Visual variable test table
变量 | 视觉参数 | ||||||
---|---|---|---|---|---|---|---|
图标大小/px | 24 | 36 | 48 | 60 | 72 | 84 | 96 |
闪烁频率/Hz | 1 | 2 | 5 | 10 | 20 | ||
图标颜色 | 白色 | 绿色 | 黄色 | 橙色 | 红色 |
变量 | 触觉参数 | ||||||
---|---|---|---|---|---|---|---|
震动IPI/ms | 9 | 50 | 60 | 118 | 238 | 302 | 475 |
占空比/% | 20 | 40 | 60 | 80 | 100 |
表2 触觉变量测试表
Table 2 Tactile variable test table
变量 | 触觉参数 | ||||||
---|---|---|---|---|---|---|---|
震动IPI/ms | 9 | 50 | 60 | 118 | 238 | 302 | 475 |
占空比/% | 20 | 40 | 60 | 80 | 100 |
变量 | 听觉参数 | |||||||
---|---|---|---|---|---|---|---|---|
声音 基频/Hz | 500 | 1 000 | 1 500 | 2 000 | 2 500 | 3 000 | 3 500 | 4 000 |
声音 IPI/ms | 5 | 50 | 60 | 118 | 238 | 302 | 475 | |
声音 响度/dB | 40 | 50 | 60 | 70 | 80 | 90 |
表3 听觉变量测试表
Table 3 Auditory variable test table
变量 | 听觉参数 | |||||||
---|---|---|---|---|---|---|---|---|
声音 基频/Hz | 500 | 1 000 | 1 500 | 2 000 | 2 500 | 3 000 | 3 500 | 4 000 |
声音 IPI/ms | 5 | 50 | 60 | 118 | 238 | 302 | 475 | |
声音 响度/dB | 40 | 50 | 60 | 70 | 80 | 90 |
模态 | 变量 | 最优参数 |
---|---|---|
视觉 | 颜色 | 红色 |
大小 | 96 px | |
闪烁 | 闪烁基频5 Hz | |
听觉 | 声音频率 | 3 000 Hz |
声音间隔 | 50 ms | |
声音响度 | 70 dB | |
触觉 | 震动占空比 | 高电平占80% |
震动IPI | 475 ms |
表4 设计变量最优参数表
Table 4 Optimal parameter table for design variables
模态 | 变量 | 最优参数 |
---|---|---|
视觉 | 颜色 | 红色 |
大小 | 96 px | |
闪烁 | 闪烁基频5 Hz | |
听觉 | 声音频率 | 3 000 Hz |
声音间隔 | 50 ms | |
声音响度 | 70 dB | |
触觉 | 震动占空比 | 高电平占80% |
震动IPI | 475 ms |
模态 | 斜率 | 截距 | R2 |
---|---|---|---|
视觉 | 1.05±0.03 | 5.71±1.61 | 0.997 |
触觉 | 1.17±0.02 | 2.57±0.72 | 0.998 |
听觉 | 0.93±0.04 | -4.57±2.55 | 0.991 |
表5 紧迫度与扰人度拟合方程值
Table 5 Fitted equation values for urgency and annoyance
模态 | 斜率 | 截距 | R2 |
---|---|---|---|
视觉 | 1.05±0.03 | 5.71±1.61 | 0.997 |
触觉 | 1.17±0.02 | 2.57±0.72 | 0.998 |
听觉 | 0.93±0.04 | -4.57±2.55 | 0.991 |
非风险表征变量 | 模态 | 风险表征变量参数 | 信息辅助等级/n | ||
---|---|---|---|---|---|
最优参数 | 视觉变量(闪烁)/Hz | 触觉变量(占空比)/% | 听觉变量(声音IPI)/ms | ||
1 | 1 | ||||
颜色:红色 | 视觉 | 2 | 2 | ||
大小:96像素 | 5 | 3 | |||
10 | 4 | ||||
10 | 20 | 5 | |||
视觉 + 触觉 | 10 | 40 | 6 | ||
震动IPI:475 ms | 10 | 60 | 7 | ||
10 | 80 | 8 | |||
10 | 100 | 9 | |||
视觉 + 触觉 + 听觉 | 10 | 100 | 475 | 10 | |
10 | 100 | 302 | 11 | ||
声音频率:3 000 Hz | 10 | 100 | 238 | 12 | |
声音响度:70 dB | 10 | 100 | 118 | 13 | |
10 | 100 | 60 | 14 | ||
10 | 100 | 50 | 15 |
表6 车内辅助信息设计模型
Table 6 In-Vehicle assistance information design model
非风险表征变量 | 模态 | 风险表征变量参数 | 信息辅助等级/n | ||
---|---|---|---|---|---|
最优参数 | 视觉变量(闪烁)/Hz | 触觉变量(占空比)/% | 听觉变量(声音IPI)/ms | ||
1 | 1 | ||||
颜色:红色 | 视觉 | 2 | 2 | ||
大小:96像素 | 5 | 3 | |||
10 | 4 | ||||
10 | 20 | 5 | |||
视觉 + 触觉 | 10 | 40 | 6 | ||
震动IPI:475 ms | 10 | 60 | 7 | ||
10 | 80 | 8 | |||
10 | 100 | 9 | |||
视觉 + 触觉 + 听觉 | 10 | 100 | 475 | 10 | |
10 | 100 | 302 | 11 | ||
声音频率:3 000 Hz | 10 | 100 | 238 | 12 | |
声音响度:70 dB | 10 | 100 | 118 | 13 | |
10 | 100 | 60 | 14 | ||
10 | 100 | 50 | 15 |
[1] | 由芳, 谢雨锟, 岳天阳, 等. 基于团队态势感知的汽车HMI评测与设计方法[J]. 图学学报, 2021, 42(6): 1027-1034. |
YOU F, XIE Y K, YUE T Y, et al. A team situation awareness-based approach to automotive HMI evaluation and design[J]. Journal of Graphics, 2021, 42(6): 1027-1034 (in Chinese). | |
[2] | 钟世文, 徐娟芳. 基于直觉化交互理论的汽车人机交互设计研究[J]. 设计, 2024, 37(8): 82-85. |
ZHONG S W, XU J F. Research on automotive human-machine interaction design based on intuitive interaction theory[J]. Design, 2024, 37(8): 82-85 (in Chinese). | |
[3] | ZHU A, MA K H, CHOI A T H, et al. The effectiveness of unimodal and multimodal warnings on drivers’ response time: a meta-analysis[J]. Applied Sciences, 2025, 15(2): 527. |
[4] | YOSHIDA K T, KIERNAN J X, OKAMURA A M, et al. Exploring human response times to combinations of audio, haptic, and visual stimuli from a mobile device[C]// 2023 IEEE World Haptics Conference. New York: IEEE Press, 2023: 121-127. |
[5] | 董萍萍, 高琳琳, 顾佳满, 等. 汽车辅助驾驶系统预警方式研究[J]. 常熟理工学院学报, 2023, 37(2): 120-124. |
DONG P P, GAO L L, GU J M, et al. An analytical study of the early warning mode of vehicle-assisted driving system[J]. Journal of Changshu Institute of Technology, 2023, 37(2): 120-124 (in Chinese). | |
[6] |
徐畅, 刘强, 何朝明, 等. 一起典型组合驾驶辅助智能汽车事故的案例分析[J]. 汽车实用技术, 2024, 49(5): 47-51.
DOI |
XU C, LIU Q, HE C M, et al. A case study of a typical combined driver assistance intelligent vehicle accident[J]. Automobile Applied Technology, 2024, 49(5): 47-51 (in Chinese). | |
[7] | LETRUD K, HERNES S. Excavating the origins of the learning pyramid myths[J]. Cogent Education, 2018, 5(1): 1518638. |
[8] | CRUNDALL E, LARGE D R, BURNETT G. A driving simulator study to explore the effects of text size on the visual demand of in-vehicle displays[J]. Displays, 2016, 43: 23-29. |
[9] |
PANKOK C, KABER D B. Cockpit displays of traffic information and pilot bias in time-to-contact judgments[J]. Aviation, Space, and Environmental Medicine, 2014, 85(6): 597-604.
PMID |
[10] | FENG J, DENG Y L, LAU M Y, et al. Age differences in driver visual behavior and vehicle control when driving with in-vehicle and on-road deliveries of service logo signs[J]. International Journal of Industrial Ergonomics, 2023, 93: 103386. |
[11] | 吴珊. 格式塔心理学原理对平面设计的启示[J]. 吉林艺术学院学报, 2008(5): 3-21. |
WU S. The inspiration of gestalt psychology to graphic design[J]. Journal of Jilin University of Arts, 2008(5): 3-21 (in Chinese). | |
[12] |
BIONDI F, STRAYER D L, ROSSI R, et al. Advanced driver assistance systems: Using multimodal redundant warnings to enhance road safety[J]. Applied Ergonomics, 2017, 58: 238-244.
DOI PMID |
[13] |
孙晓颖, 赵轶男. 触觉反馈技术在汽车信息系统中的应用[J]. 华南理工大学学报(自然科学版), 2023, 51(8): 98-109.
DOI |
SUN X Y, ZHAO Y N. Application of haptic feedback technology in automotive information systems[J]. Journal of South China University of Technology (Natural Science Edition), 2023, 51(8): 98-109 (in Chinese). | |
[14] | 孙博文, 杨建明, 孙远波, 等. 基于眼动实验的车辆人机界面色彩设计研究[J]. 包装工程, 2019, 40(2): 23-30. |
SUN B W, YANG J M, SUN Y B, et al. Color design of human vehicle interaction based on eye-tracking experiment[J]. Packaging Engineering, 2019, 40(2): 23-30 (in Chinese). | |
[15] | 刘珂. 基于多目标视觉搜索的瓦斯抽放监控系统界面优化设计研究[D]. 徐州: 中国矿业大学, 2022. |
LIU K. Research on interface optimization design of gas drainage monitoring system based on multi-objective visual search[D]. Xuzhou: China University of Mining and Technology, 2022 (in Chinese). | |
[16] |
李博, 宣金鸽, 薛艳敏, 等. 基于视觉因素的地铁调度人机界面优化设计评价[J]. 图学学报, 2025, 46(1): 200-210.
DOI |
LI B, XUAN J G, XUE Y M, et al. Evaluation of optimal design of human-machine interface for subway dispatching based on visual factors[J]. Journal of Graphics, 2025, 46(1): 200-210 (in Chinese).
DOI |
|
[17] | SCHIRN A. ANSI Z535.4-2023: Product safety signs and labels - ANSI Blog[EB/OL]. (2024-02-01) [2024-05-07]. https://blog.ansi.org/ansi-z535-4-2023-product-safety-sign-or-label/. |
[18] | ISO Copyright Office. ISO 2575: 2021(E) Road vehicles — Symbols for controls, indicators and tell-tales[S]. Geneva: ISO, 2021. |
[19] | 王纪永, 牟同升. 基于频谱分析的光源闪烁评价方法[J]. 光电工程, 2012, 39(11): 32-36. |
WANG J Y, MU T S. An evaluation method for lighting flicker based on frequency spectrum analysis[J]. Opto-Electronic Engineering, 2012, 39(11): 32-36 (in Chinese). | |
[20] | YAN W, ZHANG X W, DENG L, et al. Research on the generality of icon sizes based on visual attention[J]. Engineering Reports, 2023, 5(3): e12577. |
[21] | JACKO J A, ROSA R H, SCOTT I U, et al. Visual impairment: the use of visual profiles in evaluations of icon use in computer-based tasks[J]. International Journal of Human-Computer Interaction, 2000, 12(1): 151-164. |
[22] | SATCHAROEN K. Icon size effect on selection speed and accuracy[J]. International Journal of Computer Theory and Engineering, 2020, 12(6): 151-154. |
[23] | EDWORTHY J, LOXLEY S, DENNIS I. Improving auditory warning design: relationship between warning sound parameters and perceived urgency[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 1991, 33(2): 205-231. |
[24] |
BALDWIN C L. Verbal collision avoidance messages during simulated driving: perceived urgency, alerting effectiveness and annoyance[J]. Ergonomics, 2011, 54(4): 328-337.
DOI PMID |
[25] |
BALDWIN C L, LEWIS B A. Perceived urgency mapping across modalities within a driving context[J]. Applied Ergonomics, 2014, 45(5): 1270-1277.
DOI PMID |
[26] | LIN C T, HUANG T Y, LAING W C, et al. Assessing effectiveness of various auditory warning signals in maintaining drivers’ attention in virtual reality-based driving environments[J]. Perceptual and Motor Skills, 2009, 108(3): 825-835. |
[27] | KEMP D T. Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea[J]. Archives of Oto-Rhino-Laryngology, 1979, 224(1): 37-45. |
[28] | KUNCHUR M N. The human auditory system and audio[J]. Applied Acoustics, 2023, 211: 109507. |
[29] | PAPATHEOCHAROUS E, KAISER C, MOSER J, et al. Monitoring distracted driving behaviours with smartphones: an extended systematic literature review[J]. Sensors, 2023, 23(17): 7505. |
[30] | FERRUCCI L, GENOVESIO A, MARCOS E. The importance of urgency in decision making based on dynamic information[J]. PLoS Computational Biology, 2021, 17(10): e1009455. |
[31] | SHI R W, YANG S C, CHEN Y Y, et al. CNN‐transformer for visual‐tactile fusion applied in road recognition of autonomous vehicles[J]. Pattern Recognition Letters, 2023, 166: 200-208. |
[32] |
任洋甫, 于歌, 傅月瑶, 等. 虚拟现实中场景和时间对用户空间方向认知的影响[J]. 图学学报, 2024, 45(6): 1349-1363.
DOI |
REN Y F, YU G, FU Y Y, et al. The impact of scenery and time on spatial orientation cognition in virtual reality[J]. Journal of Graphics, 2024, 45(6): 1349-1363 (in Chinese).
DOI |
|
[33] | LI Y Z, ZHU J Y, TEDRAKE R, et al. Connecting touch and vision via cross-modal prediction[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 10601-10610. |
[34] | 王丹, 林业. 警告刺激对驾驶员接管性能的影响机理研究[J]. 交通运输系统工程与信息, 2024, 24(1): 106-114. |
WANG D, LIN Y. Mechanisms of effect of warning stimuli on driver takeover performance[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(1): 106-114 (in Chinese). |
[1] | 倪利伟, 吴量, 姜宏生, 邢彪. 新型巡检车辆侧向行驶稳定性的鲁棒性分析与控制[J]. 图学学报, 2025, 46(1): 170-178. |
[2] | 朱强军, 胡斌, 汪慧兰, 王杨. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||