欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

基于余弦核函数的SIFT 描述子改进算法

  

  1. 合肥工业大学计算机与信息学院,安徽 合肥 230009
  • 出版日期:2017-06-30 发布日期:2017-07-06
  • 基金资助:
    高等学校博士学科点专项科研基金项目(20120111110003)

An Improved SIFT Descriptor Based on Cosine Kernel Function

  1. School of Computer and Information, Hefei University of Technology, Hefei Anhui 230009, China
  • Online:2017-06-30 Published:2017-07-06

摘要: 原始的SIFT 特征描述子维数较高,包含较多的冗余数据,因而在各类应用中需要
耗费较多的时间。文中考虑到SIFT 描述子内部梯度向量之间的关系,采用基于余弦核函数的
核主成分分析法对SIFT 特征描述子进行降维操作。首先,提取样本图像的SIFT 特征描述子,
利用余弦函数生成核主成分矩阵,提取其在主方向上的投影矩阵;然后,利用该投影矩阵对新
采集的描述子进行降维操作。实验中采用图像匹配的方式比较描述子性能,实验表明:该算法
可以有效降低特征描述子的维数;同时,在不降低匹配准确率的情况下,能够获得比SIFT 多
的匹配点,而且时间性能显著提高。

关键词: 模式识别, 图像配准, 特征描述子, 主成分分析法, 余弦核函数

Abstract: The SIFT descriptor has been widely used in the field of computer vision thanks to its
various invariant attributes; however, its high dimensionality results in redundant data and makes it
time-consuming for application. Therefore, a novel algorithm, considering the inner relationship
between gradient vectors in SIFT descriptor, is presented in this paper, which utilizes the principal
component analysis method based on cosine kernel function. First, a principal component matrix,
which is used to compute the principal direction of the projection matrix, is generated by using cosine
kernel function to extract SIFT descriptors from the sample images. Then, the projection matrix is
applied to the dimensionality reduction of the SIFT descriptors from the new images. In the
experiment, we evaluate the performance of descriptors by means of image matching. The results
indicate that our method can efficiently reduce the dimensionality and also obtain more matches
without sacrificing the matching accuracy and meanwhile improve time performance.

Key words: pattern recognition, image registration, local descriptor, principal component analysis;
cosine kernel function