欢迎访问《图学学报》 分享到:

图学学报

• 计算机视觉 • 上一篇    下一篇

多特征重检测的相关滤波无人机视觉跟踪

  

  1. (1. 山东工商学院信息与电子工程学院,山东 烟台 264005;
     2. 山东省烟台第一中学,山东 烟台 264000)
  • 出版日期:2019-12-31 发布日期:2020-01-20
  • 基金资助:
    国家自然科学基金项目(61572296,61876100);山东省自然科学基金项目(ZR2015FL020);山东工商学院研究生科技创新基金项目 (2017YC0852039)

UVA Visual Tracking Via Multi-Cue Fusion Correlation Filter with Re-Detection

  1. (1. School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai Shandong 264005, China;
    2. Yantai No.1 Middle School of Shandong Province, Yantai Shandong 264000, China)
  • Online:2019-12-31 Published:2020-01-20

摘要: 无人机视觉跟踪是视觉跟踪未来应用的核心领域,其由于跟踪目标像幅较小、表 观不清且易受到无人机飞行姿态多变、飞行稳定性差等因素的影响而难以对目标进行鲁棒的跟 踪,特别是发生跟踪遮挡时,算法跟踪漂移后无法进行模型的更新。为提高无人机视频的跟踪 效果,提出一种多特征重检测跟踪方法。首先采用多特征融合的方式提高跟踪算法在无人机跟 踪特征的判别性。其次目标在出现遮挡时,扩大搜索区域,采用滑动窗口采样找到置信度最高 的目标区域并实现模型更新。通过一系列无人机视频实验结果表明,该算法在遇到遮挡问题时 具有较好的鲁棒性,能够提高无人机在目标跟踪过程中的准确性。

关键词: 无人机视觉跟踪, 相关滤波, 目标跟踪, 多特征融合

Abstract:  UAV (unmanned aerial vehicle) visual tracking is the core area of the future visual tracking applications, but the research is just emerging. It is difficult to track the target robustly in UAV visual tracking, due to the small and unclear appearanceof the target, the change of the flight attitude of the drone and its poor flight stability. Especially if tracking occlusion occurs, the algorithm cannot update the model after tracking drift. To alleviate these problems, we propose a multi-cue fusion tracking method with re-detection based on correlation filter. Firstly, multi-feature fusion is used to improve the discriminability of target appearance representation in UAV tracking. Secondly, when the occlusion occurs, the search area is expanded, and the sliding window sampling is used to find the target area with the highest confidence and the model update is realized. Tracking experiments on a series of challenging drone videos show that the proposed tracking algorithm has better robustness when encountering occlusion problems, which improves the accuracy of the drone in the target tracking.

Key words: UAV visual tracking, correlation filter, object tracking, multi-cue fusion