[1] |
田娜, 杨晓文, 单东林, 等. 我国数字农业现状与展望[J]. 中国农机化学报, 2019, 40(4): 210-213.
DOI
|
|
TIAN N, YANG X W, SHAN D L, et al. Status and prospect of digital agriculture in China[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 210-213. (in Chinese)
|
[2] |
JIA W K, TIAN Y Y, LUO R, et al. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot[J]. Computers and Electronics in Agriculture, 2020, 172: 105380.
DOI
URL
|
[3] |
刘晓洋, 赵德安, 贾伟宽, 等. 基于超像素特征的苹果采摘机器人果实分割方法[J]. 农业机械学报, 2019, 50(11): 15-23.
|
|
LIU X Y, ZHAO D A, JIA W K, et al. Fruits segmentation method based on superpixel features for apple harvesting robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 15-23. (in Chinese)
|
[4] |
KANG H W, CHEN C. Fruit detection and segmentation for apple harvesting using visual sensor in orchards[J]. Sensors, 2019, 19(20): 4599.
DOI
URL
|
[5] |
王丹丹, 宋怀波, 何东健. 苹果采摘机器人视觉系统研究进展[J]. 农业工程学报, 2017, 33(10): 59-69.
|
|
WANG D D, SONG H B, HE D J. Research advance on vision system of apple picking robot[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 59-69. (in Chinese)
|
[6] |
FOIX S, ALENYA G, TORRAS C. Lock-in time-of-flight (ToF) cameras: a survey[J]. IEEE Sensors Journal, 2011, 11(9): 1917-1926.
DOI
URL
|
[7] |
ARAD B, BALENDONCK J, BARTH R, et al. Development of a sweet pepper harvesting robot[J]. Journal of Field Robotics, 2020, 37(6): 1027-1039.
DOI
URL
|
[8] |
MILELLA A, MARANI R, PETITTI A, et al. In-field high throughput grapevine phenotyping with a consumer-grade depth camera[J]. Computers and Electronics in Agriculture, 2019, 156: 293-306.
DOI
URL
|
[9] |
GENÉ-MOLA J, VILAPLANA V, ROSELL-POLO J R, et al. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities[J]. Computers and Electronics in Agriculture, 2019, 162: 689-698.
DOI
URL
|
[10] |
TU S Q, XUE Y J, ZHENG C, et al. Detection of passion fruits and maturity classification using Red-Green-Blue Depth images[J]. Biosystems Engineering, 2018, 175: 156-167.
DOI
URL
|
[11] |
TU S Q, PANG J, LIU H F, et al. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images[J]. Precision Agriculture, 2020, 21(5): 1072-1091.
DOI
|
[12] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520.
|
[13] |
WANG C Y, LIAO H M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580.
|
[14] |
FERRER M, RUIZ-HIDALGO J, GREGORIO E, et al. Simultaneous fruit detection and size estimation using multitask deep neural networks[EB/OL]. [2022-08-14]. https://www.grap.udl.cat/en/publications/papple_rgb-d-size-dataset.
|
[15] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944.
|
[16] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768.
|
[17] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807.
|
[18] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141.
|
[19] |
JOCHER G. Add SPPF() layer[EB/OL]. (2021-08-15) [2022-08-14]. https://github.com/ultralytics/yolov5/pull/4420.
|
[20] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI
PMID
|