欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (3): 465-472.DOI: 10.11996/JG.j.2095-302X.2023030465

• 图像处理与计算机视觉 • 上一篇    下一篇

基于YoloX-ECA模型的非法野泳野钓现场监测技术

罗文宇1(), 傅明月2   

  1. 1.华北水利水电大学电子工程学院,河南 郑州 450046
    2.华北水利水电大学信息工程学院,河南 郑州 450046
  • 收稿日期:2022-10-11 接受日期:2022-12-27 出版日期:2023-06-30 发布日期:2023-06-30
  • 作者简介:

    罗文宇(1982-),男,副教授,博士。主要研究方向为可重构智能表面技术、智能无线环境。E-mail:luowenyu@ncwu.edu.cn

On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA

LUO Wen-yu1(), FU Ming-yue2   

  1. 1. School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China
    2. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China
  • Received:2022-10-11 Accepted:2022-12-27 Online:2023-06-30 Published:2023-06-30
  • About author:

    LUO Wen-yu (1982-), associate professor, Ph.D. His main research interests cover reconfigurable intelligent surface and smart radio environment. E-mail:luowenyu@ncwu.edu.cn

摘要:

我国每年有大量人员因为非法在水库及河湖水域游泳、钓鱼溺水而丧生,这些水域往往地处偏僻,无法安排监管人员24小时值守。同时,由于速度和准确度难以兼具,或体积较大难于部署等原因,现有基于视觉的目标检测方法也无法实现对非法野泳、野钓行为的实时检测。基于此,提出了融合注意力机制的YoloX-ECA模型,通过在YoloX骨干网络中的残差块和特征金字塔网络中添加ECA模块,以求在保持原YoloX模型较快检测速度的同时提升对野泳、野钓行为的检测效果。基于自制野泳、野钓数据集的实验证明,改进的YoloX-ECA模型对河湖水域的野泳、野钓行为的检测性能(AP)在90%以上,检测速度为62.29 fps。模型整体性能(mAP)较原YoloX模型提高1.21%,同其他目标检测算法如Faster-RCNN相比性能同样占优。改进的YoloX-ECA模型的实时性和准确性均达到预期设计目标,在河湖流域智能监管等领域有较大的应用前景。

关键词: YoloX, ECA, 目标检测, 注意力机制, 河湖监管

Abstract:

Every year in China, a large number of people die from drowning due to illegal swimming and fishing in reservoirs, rivers, and lakes. These bodies of water are often located in remote areas, making it difficult for staff to supervise them 24 hours a day. Existing target detection methods are either too slow or inaccurate, too large to deploy, or incapable of detecting illegal swimming and fishing in real-time. To address these shortcomings, we proposed the YoloX-ECA model with an attention model. By adding the efficient channel attention (ECA) block to the CSPLayer and FPN, we aimed to improve detection performance for swimming and fishing while maintaining detection speed. Experimental results on self-made datasets showed that the YoloX-ECA achieved over 90% AP for the detection of swimming and fishing classes, with a detection speed of 62.29 fps. Compared with YoloX, mAP was increased by 1.21%. Furthermore, YoloX-ECA’s performance also outperformed other target detection algorithms such as Faster-RCNN. The improved YoloX-ECA model achieved the expected design goals and displayed great prospects for application in the field of intelligent supervision of rivers and lakes.

Key words: YoloX, ECA, object detection, attention model, river and lake supervision

中图分类号: