[1] |
赵宇飞, 刘彪, 王毅, 等. 基于数字图像处理的土石坝坝料合格性智能检测方法[J]. 水利学报, 2022, 53(10): 1194-1206.
|
|
ZHAO Y F, LIU B, WANG Y, et al. Intelligent detection method for material qualification of earth-rock dam based on digital image processing[J]. Journal of Hydraulic Engineering, 2022, 53(10): 1194-1206. (in Chinese)
|
[2] |
吴海燕, 李效宁. 图像识别在甘肃智慧水利中的应用[J]. 中国新通信, 2022, 24(8): 70-74.
|
|
WU H Y, LI X N. Application of image recognition in Gansu wisdom water conservancy[J]. China New Telecommunications, 2022, 24(8): 70-74. (in Chinese)
|
[3] |
赵薛强, 凌峻. 无人机自动巡检智慧监控系统研究与应用[J]. 人民长江, 2022, 53(6): 235-241.
|
|
ZHAO X Q, LING J. Development and application of intelligent monitoring system with UAV automatic inspection[J]. Yangtze River, 2022, 53(6): 235-241. (in Chinese)
|
[4] |
LI J, WANG J Z, LIU W X. Moving target detection and tracking algorithm based on context information[J]. IEEE Access, 2019, 7: 70966-70974.
DOI
URL
|
[5] |
GU B, HU H, REN Y, et al. Moving target detection and tracking in complex background[J]. International Journal of Smart Home, 2015, 9(9): 95-102.
DOI
URL
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788.
|
[7] |
王银, 王飞翔, 孙前来. 多尺度特征融合车辆检测方法[J]. 系统仿真学报, 2022, 34(6): 1219-1229.
DOI
|
|
WANG Y, WANG F X, SUN Q L. Vehicle detection method based on multi scale feature fusion[J]. Journal of System Simulation, 2022, 34(6): 1219-1229. (in Chinese)
DOI
|
[8] |
张明臻. 基于Dense-YOLO网络的井下行人检测模型[J]. 工矿自动化, 2022, 48(3): 86-90.
|
|
ZHANG M Z. Underground pedestrian detection model based on Dense-YOLO network[J]. Industry and Mine Automation, 2022, 48(3): 86-90. (in Chinese)
|
[9] |
刘力, 苟军年. 基于Yolov4的铁道侵限障碍物检测方法研究[J]. 铁道科学与工程学报, 2022, 19(2): 528-536.
|
|
LIU L, GOU J N. Research on detection method of railway intrusion obstacles based on Yolov4[J]. Journal of Railway Science and Engineering, 2022, 19(2): 528-536. (in Chinese)
|
[10] |
李坤, 樊宇. 基于改进卷积神经网络的船舶图像识别研究[J]. 舰船科学技术, 2021, 43(12): 187-189.
|
|
LI K, FAN Y. Research on ship image recognition based on improved convolution neural network[J]. Ship Science and Technology, 2021, 43(12): 187-189. (in Chinese)
|
[11] |
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2022-07-01]. https://arxiv.org/abs/2107.08430.
|
[12] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-07-01]. https://arxiv.org/abs/1804.02767.
|
[13] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-10-01]. https://arxiv.org/abs/2004.10934.
|
[14] |
CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[EB/OL]. (2021-05-17) [2022-07-01]. https://arxiv.org/abs/2103.09460.
|
[15] |
GAO W W, SHAN M T, SONG N, et al. Detection of microaneurysms in fundus images based on improved YOLOv4 with SENet embedded[J]. Journal of Biomedical Engineering, 2022, 39(4): 713-720.
|
[16] |
赵杰, 李絮, 申通. 基于SENet注意力机制和深度残差网络的腹部动脉分割[J]. 科学技术与工程, 2022, 22(22): 9529-9536.
|
|
ZHAO J, LI X, SHEN T. Abdominal artery segmentation based on SENet attention mechanism and deep residual network[J]. Science Technology and Engineering, 2022, 22(22): 9529-9536. (in Chinese)
|
[17] |
刘学平, 李玙乾, 刘励, 等. 嵌入SENet结构的改进YOLOV3目标识别算法[J]. 计算机工程, 2019, 45(11): 243-248.
DOI
|
|
LIU X, LI Y, LIU L, et al. Improved YOLOV3 target recognition algorithm with embedded SENet structure[J]. Computer Engineering, 2019, 45(11): 243-248. (in Chinese)
DOI
|
[18] |
李克文, 李新宇. 基于SENet改进的Faster R-CNN行人检测模型[J]. 计算机系统应用, 2020, 29(4): 266-271.
|
|
LI K W, LI X Y. Pedestrian detection model based on improved faster R-CNN with SENet[J]. Computer Systems & Applications, 2020, 29(4): 266-271. (in Chinese)
|
[19] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-18) [2022-07-01]. https://arxiv.org/abs/1807.06521.
|
[20] |
付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156.
DOI
|
|
FU G, HUANG J, YANG T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156. (in Chinese)
DOI
|
[21] |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[EB/OL]. (2020-03-24) [2022-07-01]. https://arxiv.org/abs/1910.03151.
|
[22] |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[EB/OL]. (2015-02-06) [2022-07-01]. https://arxiv.org/abs/1502.01852.
|