图学学报 ›› 2023, Vol. 44 ›› Issue (3): 448-455.DOI: 10.11996/JG.j.2095-302X.2023030448
收稿日期:
2022-08-20
接受日期:
2023-01-04
出版日期:
2023-06-30
发布日期:
2023-06-30
通讯作者:
刘昕明(1984-),男,讲师,博士。主要研究方向为复杂工业建模、优化和诊断。E-mail:83660832@qq.com<
作者简介:
毛爱坤(1997-),男,硕士研究生,主要研究方向为电力机器视觉深度学习。E-mail:2398494063@qq.com
基金资助:
MAO Ai-kun(), LIU Xin-ming(
), CHEN Wen-zhuang, SONG Shao-lou
Received:
2022-08-20
Accepted:
2023-01-04
Online:
2023-06-30
Published:
2023-06-30
Contact:
LIU Xin-ming (1984-), lecturer, Ph.D. His main research interests cover complex industrial modeling, optimization and diagnosis. E-mail:83660832@qq.com
About author:
MAO Ai-kun (1997-), master student, His main research interest covesr deep learning of power machine vision. E-mail:2398494063@qq.com
Supported by:
摘要:
高效、准确的边端仪表检测设备是构建智能变电站的重要环节。针对变电站的复杂环境,移动边端设备难以快速、准确地检测出小目标、多类别、高相似的仪表目标的问题,提出一种基于轻量级SS-YOLOv5网络的电力仪表目标检测方法。该算法以YOLOv5为基础,采用轻量级网络ShuffleNet V2改进模型网络结构,引入深度可分离卷积提取仪表特征,降低颈部融合时模型计算复杂度,提高检测速度;结合Swin Transformer通过移位窗口进行建模,实现全局和局部信息交互,提升特征提取能力;最后自主构建变电站仪表图像数据集对模型进行训练、测试和验证。实验结果表明,与原YOLOv5算法相比,对于检测压力表、电流表、电压表等仪表图像,模型参数量减少了91.8%,目标检测速度提升43.8%,为部署到边端提供一种可行的技术方案,能够推动变电站的信息化与智能化的建设。
中图分类号:
毛爱坤, 刘昕明, 陈文壮, 宋绍楼. 改进YOLOv5算法的变电站仪表目标检测方法[J]. 图学学报, 2023, 44(3): 448-455.
MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(3): 448-455.
层数 | 网络层 | 输入尺寸 | 步长 | 通道数 |
---|---|---|---|---|
0 | CBLM | 640×640×3 | - | 16 |
1 | ShuffleLayer | 160×160×16 | 2 | 64 |
2 | C3SWinTR | 80×80×64 | - | 64 |
3 | ShuffleLayer | 80×80×64 | 2 | 120 |
4 | C3 | 40×40×120 | - | 120 |
5 | ShuffleLayer | 40×40×120 | 2 | 232 |
6 | C3 | 20×20×232 | - | 232 |
7 | DWConv | 20×20×232 | 1 | 64 |
8 | Upsample | 20×20×64 | - | - |
9 | Concat | - | - | - |
10 | ShuffleLayer | 40×40×184 | 1 | 184 |
11 | DWConv | 40×40×184 | 1 | 32 |
12 | Upsample | 40×40×32 | - | - |
13 | Concat | - | - | - |
14 | ShuffleLayer | 80×80×96 | 1 | 96 |
15 | Conv | 80×80×96 | 2 | 32 |
16 | Concat | - | - | - |
17 | ShuffleLayer | 40×40×64 | 1 | 64 |
18 | Conv | 40×40×64 | 2 | 64 |
19 | Concat | - | - | - |
20 | ShuffleLayer | 20×20×128 | 1 | 128 |
21 | Detect | - | - | - |
表1 网络参数
Table 1 Network parameters
层数 | 网络层 | 输入尺寸 | 步长 | 通道数 |
---|---|---|---|---|
0 | CBLM | 640×640×3 | - | 16 |
1 | ShuffleLayer | 160×160×16 | 2 | 64 |
2 | C3SWinTR | 80×80×64 | - | 64 |
3 | ShuffleLayer | 80×80×64 | 2 | 120 |
4 | C3 | 40×40×120 | - | 120 |
5 | ShuffleLayer | 40×40×120 | 2 | 232 |
6 | C3 | 20×20×232 | - | 232 |
7 | DWConv | 20×20×232 | 1 | 64 |
8 | Upsample | 20×20×64 | - | - |
9 | Concat | - | - | - |
10 | ShuffleLayer | 40×40×184 | 1 | 184 |
11 | DWConv | 40×40×184 | 1 | 32 |
12 | Upsample | 40×40×32 | - | - |
13 | Concat | - | - | - |
14 | ShuffleLayer | 80×80×96 | 1 | 96 |
15 | Conv | 80×80×96 | 2 | 32 |
16 | Concat | - | - | - |
17 | ShuffleLayer | 40×40×64 | 1 | 64 |
18 | Conv | 40×40×64 | 2 | 64 |
19 | Concat | - | - | - |
20 | ShuffleLayer | 20×20×128 | 1 | 128 |
21 | Detect | - | - | - |
实验平台 | 配置 |
---|---|
操作系统 | Ubuntu 18.04 |
CPU | Intel@Xeon (R) Gold 6230 |
GPU | NVIDIA Ge Force RTX2080Ti |
编程语言 | Python 3.7 |
深度学习框架 | Pytorch |
表2 实验平台配置
Table 2 Detailed configuration of experiment
实验平台 | 配置 |
---|---|
操作系统 | Ubuntu 18.04 |
CPU | Intel@Xeon (R) Gold 6230 |
GPU | NVIDIA Ge Force RTX2080Ti |
编程语言 | Python 3.7 |
深度学习框架 | Pytorch |
检测方案 | mAP (%) | 模型大小(MB) | GFLOGPs | 检测速度(ms) | 参数量 |
---|---|---|---|---|---|
方案一 | 91.00 | 66.30 | 9.70 | 9.3 | 8 679 120 |
方案二 | 82.14 | 22.50 | 9.60 | 7.2 | 6 056 606 |
方案三 | 92.30 | 5.70 | 7.10 | 6.5 | 656 496 |
方案四 | 92.80 | 2.50 | 3.54 | 4.7 | 537 865 |
方案五 | 95.60 | 13.70 | 16.40 | 8.9 | 7 064 698 |
方案六 | 91.80 | 1.27 | 1.50 | 3.7 | 571 094 |
本文 | 94.40 | 1.32 | 1.70 | 5.0 | 575 198 |
表3 不同算法性能指标对比
Table 3 Comparison of performance indexes of different algorithms
检测方案 | mAP (%) | 模型大小(MB) | GFLOGPs | 检测速度(ms) | 参数量 |
---|---|---|---|---|---|
方案一 | 91.00 | 66.30 | 9.70 | 9.3 | 8 679 120 |
方案二 | 82.14 | 22.50 | 9.60 | 7.2 | 6 056 606 |
方案三 | 92.30 | 5.70 | 7.10 | 6.5 | 656 496 |
方案四 | 92.80 | 2.50 | 3.54 | 4.7 | 537 865 |
方案五 | 95.60 | 13.70 | 16.40 | 8.9 | 7 064 698 |
方案六 | 91.80 | 1.27 | 1.50 | 3.7 | 571 094 |
本文 | 94.40 | 1.32 | 1.70 | 5.0 | 575 198 |
图10 实验结果((a)方案一;(b)方案二;(c)方案三;(d)方案四;(e)方案五;(f)方案六;(g)本文方案)
Fig. 10 Experimental resultse ((a) Option one; (b) Option two; (c) Option three; (d) Option four; (e) Option five; (f) Option six; (g) Scheme of this article)
序号 | 模型 | mAP (%) | 参数量 |
---|---|---|---|
1 | YOLOv5 | 95.6 | 7 064 698 |
2 | YOLOv5+Shuffle | 90.2 | 573 255 |
3 | YOLOv5+Shuffle +深度可分离卷积 | 91.8 | 571 094 |
4 | YOLOv5+Shuffle+ 深度可分离卷积+ Swin Transformer | 94.4 | 575 198 |
表4 消融实验
Table 4 Ablation experiments
序号 | 模型 | mAP (%) | 参数量 |
---|---|---|---|
1 | YOLOv5 | 95.6 | 7 064 698 |
2 | YOLOv5+Shuffle | 90.2 | 573 255 |
3 | YOLOv5+Shuffle +深度可分离卷积 | 91.8 | 571 094 |
4 | YOLOv5+Shuffle+ 深度可分离卷积+ Swin Transformer | 94.4 | 575 198 |
[1] | 王刘旺, 周自强, 林龙, 等. 人工智能在变电站运维管理中的应用综述[J]. 高电压技术, 2020, 46(1): 1-13. |
WANG L W, ZHOU Z Q, LIN L, et al. Review on artificial intelligence in substation operation and maintenance management[J]. High Voltage Engineering, 2020, 46(1): 1-13. (in Chinese) | |
[2] | 周振宇, 王曌, 廖海君, 等. 电力物联网5G云-边-端协同框架与资源调度方法[J]. 电网技术, 2022, 46(5): 1641-1651. |
ZHOU Z Y, WANG Z, LIAO H J, et al. 5G cloud-edge-end collaboration framework and resource scheduling method in power Internet of Things[J]. Power System Technology, 2022, 46(5): 1641-1651. (in Chinese) | |
[3] | 邢浩强, 杜志岐, 苏波. 变电站指针式仪表检测与识别方法[J]. 仪器仪表学报, 2017, 38(11): 2813-2821. |
XING H Q, DU Z Q, SU B. Detection and recognition method for pointer-type meter in transformer substation[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2813-2821. (in Chinese) | |
[4] | 朱斌滨, 樊绍胜. 雨雾环境下的变电站指针式仪表识别方法[J]. 激光与光电子学进展, 2021, 58(24): 221-230. |
ZHU B B, FAN S S. Reading method of substation pointer meter in rain-fog environment[J]. Laser & Optoelectronics Progress, 2021, 58(24): 221-230. (in Chinese) | |
[5] | 黄山, 吴振升, 任志刚, 等. 电力智能巡检机器人研究综述[J]. 电测与仪表, 2020, 57(2): 26-38. |
HUANG S, WU Z S, REN Z G, et al. Review of electric power intelligent inspection robot[J]. Electrical Measurement & Instrumentation, 2020, 57(2): 26-38. (in Chinese) | |
[6] | 吴杰. 变电站巡检机器人的指针式仪表智能读数系统研究[D]. 武汉: 武汉科技大学, 2019. |
WU J. Research on intelligent recognition system of pointer instrument for substation inspection robot[D]. Wuhan: Wuhan University of Science and Technology, 2019. (in Chinese) | |
[7] | 万吉林, 王慧芳, 管敏渊, 等. 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 电网技术, 2020, 44(8): 3097-3105. |
WAN J L, WANG H F, GUAN M Y, et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-net[J]. Power System Technology, 2020, 44(8): 3097-3105. (in Chinese) | |
[8] | 唐标, 李婷, 李博, 等. 基于边缘计算的变电站内智能布控数据分析与展示[J]. 电气应用, 2021, 40(2): 79-84. |
TANG B, LI T, LI B, et al. Analysis and display of intelligent deployment and control data in substations based on edge computing[J]. Electrotechnical Application, 2021, 40(2): 79-84. (in Chinese) | |
[9] | 李斌, 李亚霖, 朱新山, 等. 基于注意力机制与特征平衡的变电站多目标检测[J]. 电网技术, 2022, 46(6): 2122-2132. |
LI B, LI Y L, ZHU X S, et al. Multi-target detection in substation scence based on attention mechanism and feature balance[J]. Power System Technology, 2022, 46(6): 2122-2132. (in Chinese) | |
[10] | 崔昊杨, 张雨阁, 张驯, 等. 基于边端轻量级网络的电力仪表设备检测方法[J]. 电网技术, 2022, 46(3): 1186-1193. |
CUI H Y, ZHANG Y G, ZHANG X, et al. Detection of power instruments equipment based on edge lightweight network[J]. Power System Technology, 2022, 46(3): 1186-1193. (in Chinese) | |
[11] | 范新南, 黄伟盛, 史朋飞, 等. 基于改进YOLOv4的嵌入式变电站仪表检测算法[J]. 图学学报, 2022, 43(3): 396-403. |
FAN X N, HUANG W S, SHI P F, et al. Embedded substation instrument detection algorithm based on improved YOLOv4[J]. Journal of Graphics, 2022, 43(3): 396-403. (in Chinese) | |
[12] | 何永春, 申永伟, 吴涛, 等. 基于注意力机制的多尺度仪表检测[J]. 科学技术与工程, 2021, 21(31): 13430-13438. |
HE Y C, SHEN Y W, WU T, et al. Multi-scale instrument detection based on attention mechanism[J]. Science Technology and Engineering, 2021, 21(31): 13430-13438. (in Chinese) | |
[13] | 马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148-1159. |
MA P, FAN Y F. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148-1159. (in Chinese) | |
[14] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[15] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[16] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 1440-1448. |
[17] | JIANG H Z, LEARNED-MILLER E. Face detection with the faster R-CNN[C]// The 12th IEEE International Conference on Automatic Face & Gesture Recognition. New York: IEEE Press, 2017: 650-657. |
[18] | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. [2022-02-07]. https://arxiv.org/abs/1602.07360. |
[19] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-04-04]. https://arxiv.org/abs/1704.04861. |
[20] | SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[21] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 1314-1324. |
[22] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6848-6856. |
[23] | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]// Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 122-138. |
[24] | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1577-1586. |
[25] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002. |
[1] | 毕春艳, 刘越. 基于深度学习的视频人体动作识别综述[J]. 图学学报, 2023, 44(4): 625-639. |
[2] | 李利霞, 王鑫, 王军, 张又元 .
基于特征融合与注意力机制的无人机图像小目标检测算法
[J]. 图学学报, 2023, 44(4): 658-666. |
[3] | 郝帅, 赵新生, 马旭, 张旭, 何田, 侯李祥.
基于 TR-YOLOv5 的输电线路多类缺陷目标检测方法
[J]. 图学学报, 2023, 44(4): 667-676. |
[4] | 曹义亲 , 周一纬 , 徐露 .
基于 E-YOLOX 的实时金属表面缺陷检测算法
[J]. 图学学报, 2023, 44(4): 677-690. |
[5] | 邵俊棋, 钱文华, 徐启豪.
基于条件残差生成对抗网络的风景图生成
[J]. 图学学报, 2023, 44(4): 710-717. |
[6] | 邓渭铭 , 杨铁军 , 李纯纯 , 黄琳 . 基于神经网络架构搜索的铭牌目标检测方法[J]. 图学学报, 2023, 44(4): 718-727. |
[7] | 余伟群, 刘佳涛, 张亚萍.
融合注意力的拉普拉斯金字塔单目深度估计
[J]. 图学学报, 2023, 44(4): 728-738. |
[8] | 郭印宏, 王立春, 李爽.
基于重复性和特异性约束的图像特征匹配
[J]. 图学学报, 2023, 44(4): 739-746. |
[9] | 胡欣, 周运强, 肖剑, 杨杰. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437. |
[10] | 郝鹏飞, 刘立群, 顾任远. YOLO-RD-Apple果园异源图像遮挡果实检测模型[J]. 图学学报, 2023, 44(3): 456-464. |
[11] | 罗文宇, 傅明月. 基于YoloX-ECA模型的非法野泳野钓现场监测技术[J]. 图学学报, 2023, 44(3): 465-472. |
[12] | 王佳婧, 王晨, 朱媛媛, 王笑梅. 基于民国纸币的图元素匹配检索[J]. 图学学报, 2023, 44(3): 492-501. |
[13] | 杨柳, 吴晓群. 基于深度学习的三维形状补全研究综述[J]. 图学学报, 2023, 44(2): 201-215. |
[14] | 曾武, 朱恒亮, 邢树礼, 林江宏, 毛国君. 显著性检测引导的图像数据增强方法[J]. 图学学报, 2023, 44(2): 260-270. |
[15] | 陈刚 , 张培基 , 龚冬冬 , 于俊清 . 火电厂监控视频安全服检测方法研究[J]. 图学学报, 2023, 44(2): 291-297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||