图学学报 ›› 2023, Vol. 44 ›› Issue (5): 997-1012.DOI: 10.11996/JG.j.2095-302X.2023050997
韩兆阳1,2(), 翁冬冬1,2, 郭署山3, 贺文杰1,2, 江海燕1,2, 李冬1,2(
)
收稿日期:
2023-02-12
接受日期:
2023-06-06
出版日期:
2023-10-31
发布日期:
2023-10-31
通讯作者:
李冬(1986-),男,助理研究员,博士。主要研究方向为虚拟现实、增强现实和人机交互。E-mail:drli@bit.edu.cn
作者简介:
韩兆阳(1998-),男,硕士研究生。主要研究方向为虚拟现实、增强现实和人机交互。E-mail:hzy3_3@163.com
基金资助:
HAN Zhao-yang1,2(), WENG Dong-dong1,2, GUO Shu-shan3, HE Wen-jie1,2, JIANG Hai-yan1,2, LI Dong1,2(
)
Received:
2023-02-12
Accepted:
2023-06-06
Online:
2023-10-31
Published:
2023-10-31
Contact:
LI Dong (1986-), assistant researcher, Ph.D. His main research interests cover visual reality, augmented reality and human-computer interaction. E-mail:About author:
HAN Zhao-yang (1998-), master student. His main research interests cover visual reality, augmented reality and human-computer interaction. E-mail:hzy3_3@163.com
Supported by:
摘要:
在虚拟现实,增强现实或是混合现实应用中,实时获取用户和交互对象的位姿是构建高沉浸感虚拟环境的前提条件。随着虚拟现实技术的不断发展,用户对虚拟环境中运动范围的要求不断提高,不再仅满足于单个房间内的小范围移动,而希望能在更大范围进行漫游和交互。为此,提出了一种光学定位追踪系统,通过在天花板或地面布置少量的红外LED标记点来实现精确的相机三维追踪。所述跟踪系统使用了最基本的点、线元素构建标记点图案,通过设计该标记点图案的编码原则、布局重复特征检索方法和对应点匹配算法,实现了标记点图像的快速、精确解析。实验证明系统计算的位置精度可以控制在毫米级别范围内,同时在对抗标记点抖动和遮挡等方面保持了较高的识别准确率。由此实现的跟踪系统具有低成本、易拓展和抗遮挡等特点,可以满足百平方米级别范围的实时追踪定位需求。
中图分类号:
韩兆阳, 翁冬冬, 郭署山, 贺文杰, 江海燕, 李冬. 一种基于简易标记点编码的光学跟踪系统[J]. 图学学报, 2023, 44(5): 997-1012.
HAN Zhao-yang, WENG Dong-dong, GUO Shu-shan, HE Wen-jie, JIANG Hai-yan, LI Dong. An optical tracking system based on simple marker encoding[J]. Journal of Graphics, 2023, 44(5): 997-1012.
图3 基本图元几何不变量((a)主方向平行的图元组合;(b)主方向垂直的图元组合)
Fig. 3 Geometric invariants ((a) Combination of elements with parallel main direction; (b) Combination of elements perpendicular to the main direction)
图4 最小视场范围((a)最小视场中的平行图元;(b)最小视场中的垂直图元)
Fig. 4 Minimum field of view ((a) Parallel elements in the minimum field of view; (b) Vertical elements in the minimum field of view)
图5 基本图元待选位置与随机分布((a)离散图元位点;(b)自动布局结果)
Fig. 5 Location to be selected and random distribution ((a) Discrete elements location; (b) Automated layout result)
图10 基本图元的识别((a)二值图像;(b)检测圆点;(c)检测直线;(d)识别图元)
Fig. 10 Identification of basic elements ((a) Binary image; (b) Dot detection; (c) Line detection; (d) Element recognition)
图11 图像几何不变量还原流程((a)基本图元;(b)识别方向;(c)检测外侧图元;(d)重投影;(e)缩放)
Fig. 11 Geometric invariant restoration ((a) Basic element; (b) Direction recognition; (c) Outer elements detection; (d) Reprojection; (e) Scale)
图13 倾斜角20°时相机三维位置分布((a)三维位置;(b) XZ截面;(c) YZ截面)
Fig. 13 The three-dimensional position distribution of the camera at an inclination angle of 20° ((a) 3D position; (b) XZ section; (c) YZ section)
误差 | X | Y | Z |
---|---|---|---|
平均误差 | 5.693 | 6.060 | 10.710 |
最大误差 | 25.322 | 25.218 | 112.941 |
表1 三维位置的平均绝对误差(mm)
Table 1 Average absolute error of three-dimensional position (mm)
误差 | X | Y | Z |
---|---|---|---|
平均误差 | 5.693 | 6.060 | 10.710 |
最大误差 | 25.322 | 25.218 | 112.941 |
误差 | Pitch | Yaw | Roll |
---|---|---|---|
平均误差 | 0.347 | 0.054 | 0.133 |
最大误差 | 1.923 | 0.283 | 1.026 |
表2 三维朝向的平均绝对误差(°)
Table 2 Average absolute error of three-dimensional orientation (°)
误差 | Pitch | Yaw | Roll |
---|---|---|---|
平均误差 | 0.347 | 0.054 | 0.133 |
最大误差 | 1.923 | 0.283 | 1.026 |
时间 | RTP | LWT | SOT | Ours |
---|---|---|---|---|
处理时间 | 13.00 | 11.00 | 5.00 | 4.34 |
表3 每帧平均处理时间(ms)
Table 3 Average processing time per frame (ms)
时间 | RTP | LWT | SOT | Ours |
---|---|---|---|---|
处理时间 | 13.00 | 11.00 | 5.00 | 4.34 |
[1] | SUTHERLAND I E. A head-mounted three dimensional display[C]// Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I. New York: ACM, 1968: 757-764. |
[2] | SAYYAD E, SRA M, HÖLLERER T. Walking and teleportation in wide-area virtual reality experiences[C]// 2020 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2020: 608-617. |
[3] | BARAI S, MOMIN M. Outside-in electromagnetic tracking method for augmented and virtual reality 6-degree of freedom head-mounted displays[C]// The 4th International Conference on Intelligent Computing and Control Systems. New York: IEEE Press, 2020: 467-476. |
[4] | WILLIAMS B, NARASIMHAM G, RUMP B, et al. Exploring large virtual environments with an HMD when physical space is limited[C]// The 4th Symposium on Applied Perception in Graphics and Visualization. New York: ACM, 2007: 41-48. |
[5] | HOFMANN-WELLENHOF B, LICHTENEGGER H, COLLINS J. Global positioning system: theory and practice[M]. Vienna: Springer Vienna, 1997: 12-23. |
[6] | HARLE R K, HOPPER A. Deploying and evaluating a location-aware system[C]// The 3rd International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2005: 219-232. |
[7] | PINTARIC T, KAUFMANN H. Affordable infrared-optical pose-tracking for virtual and augmented reality[C]// Proceedings of Trends and Issues in Tracking for Virtual Environments Workshop. New York: IEEE Press, 2007: 44-51. |
[8] | LI D, WANG D L, WENG D D, et al. Coded light based extensible optical tracking system[C]// 2018 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2018: 439-445. |
[9] | KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]// The 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2008: 225-234. |
[10] | CASTLE R, KLEIN G, MURRAY D W. Video-rate localization in multiple maps for wearable augmented reality[C]// The 12th IEEE International Symposium on Wearable Computers. New York: IEEE Press, 2009: 15-22. |
[11] | DAVISON. Real-time simultaneous localisation and mapping with a single camera[C]// The 9th IEEE International Conference on Computer Vision. New York: IEEE Press, 2008: 1403-1410. |
[12] | SCARAMUZZA D, FRAUNDORFER F. Visual odometry[tutorial[J]. IEEE Robotics & Automation Magazine, 2011, 18(4): 80-92. |
[13] | BISHOP T G. Self-tracker: a smart optical sensor on silicon[M]. Chapel Hill: The University of North Carolina at Chapel Hill, 1984: 1-78 |
[14] | WANG J F, CHI V, FUCHS H. A real-time optical 3D tracker for head-mounted display systems[C]// Proceedings of the 1990 Symposium on Interactive 3D Graphics. New York: ACM, 1990: 205-215. |
[15] | WARD M, AZUMA R, BENNETT R, et al. A demonstrated optical tracker with scalable work area for head-mounted display systems[C]// Proceedings of the 1992 Symposium on Interactive 3D Graphics. New York: ACM, 1992: 43-52. |
[16] | WELCH G, BISHOP G, VICCI L, et al. The HiBall Tracker: high-performance wide-area tracking for virtual and augmented environments[C]// Proceedings of the ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 1999: 1-10. |
[17] | NAKAZATO Y, KANBARA M, YOKOYA N. Localization of wearable users using invisible retro-reflective markers and an IR camera[C]// Proc SPIE 5664, Stereoscopic Displays and Virtual Reality Systems XII. Bellingham: SPIE, 2005: 563-570. |
[18] | KATO H, BILLINGHURST M. Marker tracking and HMD calibration for a video-based augmented reality conferencing system[C]// The 2nd IEEE and ACM International Workshop on Augmented Reality. New York: IEEE Press, 1999: 85-94. |
[19] | FIALA M. Artag, a fiducial marker system using digital techniques[J]. National Research Council Publication, 2004, 47419: 1-47. |
[20] | FOXLIN E, NAIMARK L. VIS-Tracker: a wearable vision-inertial self-tracker[C]// IEEE Virtual Reality, 2003. Proceedings. New York: IEEE Press, 2003: 199-206. |
[21] | MAESEN S, LIU Y J, GOORTS P, et al. Tile Tracker: a practical and inexpensive positioning system for mobile AR applications[C]// International Conference on Augmented and Virtual Reality. Cham: Springer, 2014: 434-441. |
[22] | SAGITOV A, SHABALINA K, LAVRENOV R, et al. Comparing fiducial marker systems in the presence of occlusion[C]// 2017 International Conference on Mechanical, System and Control Engineering. New York: IEEE Press, 2017: 377-382. |
[23] | 赵梓建. 大空间沉浸式虚拟现实系统的视觉定位研究[D]. 秦皇岛: 燕山大学, 2020. |
ZHAO Z J. Research on visual positioning of large space immersive virtual reality system[D]. Qinhuangdao: Yanshan University, 2020. (in Chinese) | |
[24] | MAESEN S, GOORTS P, BEKAERT P. Scalable optical tracking for navigating large virtual environments using spatially encoded markers[C]// The 19th ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 2013: 101-110. |
[25] | JORISSEN L, MAESEN S, DOSHI A, et al. Robust global tracking using a seamless structured pattern of dots[C]// International Conference on Augmented and Virtual Reality. Cham: Springer, 2014: 210-231. |
[26] |
BERGAMASCO F, ALBARELLI A, TORSELLO A. Pi-Tag: a fast image-space marker design based on projective invariants[J]. Machine Vision and Applications, 2013, 24(6): 1295-1310.
DOI URL |
[27] | UCHIYAMA H, SAITO H. Random dot markers[C]// 2011 IEEE Virtual Reality Conference. New York: IEEE Press, 2011: 35-38. |
[28] | CHEN L, FU H B, ANDY LI W H, et al. Scalable maps of random dots for middle-scale locative mobile games[C]// 2013 IEEE Virtual Reality. New York: IEEE Press, 2013: 39-42. |
[29] | NAKAI T, KISE K, IWAMURA M. Use of affine invariants in locally likely arrangement hashing for camera-based document image retrieval[M]// Document Analysis Systems VII. Heidelberg: Springer, 2006: 541-552. |
[30] |
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
DOI URL |
[31] |
GAO X S, HOU X R, TANG J L, et al. Complete solution classification for the perspective-three-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 930-943.
DOI URL |
[32] |
LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166.
DOI URL |
[33] | MAESEN S, BEKAERT P. Low-cost, wide-area tracking for virtual environments[C]// IEEE VR 2007 Workshop Trends and Issues in Tracking for Virtual Environments. New York: IEEE Press, 2007: 16-21. |
[34] |
YANG L M, NORMAND J M, MOREAU G. Local geometric consensus: a general purpose point pattern-based tracking algorithm[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(11): 1299-1308.
DOI URL |
[1] | 东辉, 陈鑫凯, 孙浩, 姚立纲. 基于改进 YOLOv4 和图像处理的蔬菜田杂草检测[J]. 图学学报, 2022, 43(4): 559-569. |
[2] | 林 森 , 刘 旭 . 门控融合对抗网络的水下图像增强 [J]. 图学学报, 2021, 42(6): 948-956. |
[3] | 满开亮, 汪友生, 刘继荣. 基于稠密残差网络的图像超分辨率重建算法[J]. 图学学报, 2021, 42(4): 556-562. |
[4] | 王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6): 861-870. |
[5] | 崔文超, 邹俊杰, 汪方毅, 唐庭龙, 夏 平. OBE 理念下项目驱动的数字图像处理教学研究 [J]. 图学学报, 2020, 41(6): 1031-1038. |
[6] | 吴泽斌 1,张东亮 1,李基拓 2,麻 菁 1,信玉峰 3. 复杂场景下的人体轮廓提取及尺寸测量[J]. 图学学报, 2020, 41(5): 740-749. |
[7] | 李 桂, 李 腾. 基于姿态引导的场景保留人物视频生成[J]. 图学学报, 2020, 41(4): 539-547. |
[8] | 柳有权 1, 张彩荣 1, 马 雷 2,3, 石 剑 4, 孙 昭 1, 陈彦云 3 . 一种基于图像结构特征的实时点画生成算法[J]. 图学学报, 2019, 40(3): 435-440. |
[9] | 张新春, 曹应平, 韩春雨, 白云灿. 基于图像处理的输电线路导线表面损伤特征研究[J]. 图学学报, 2018, 39(3): 440-447. |
[10] | 李振雨, 王好臣. 基于视觉识别定位的苹果采摘系统研究[J]. 图学学报, 2018, 39(3): 493-500. |
[11] | 李 灏, 王宏涛, 董晴晴. 管道缺陷自动检测与分类[J]. 图学学报, 2017, 38(6): 851-856. |
[12] | 赵 军, 田海韬. 利用机器视觉检测马铃薯外部品质方法综述[J]. 图学学报, 2017, 38(3): 382-387. |
[13] | 高满屯, 李 阳, 王淑侠, 王守霞. 一类三焦点曲线[J]. 图学学报, 2016, 37(4): 457-466. |
[14] | 邹建成, 张文婷. 一种基于MOD 字典学习的图像超分辨率重建新算法[J]. 图学学报, 2015, 36(3): 402-406. |
[15] | 周 远, 韩裕生, 周浦城. 一种单幅图像雨滴去除的方法[J]. 图学学报, 2015, 36(3): 438-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||