图学学报 ›› 2024, Vol. 45 ›› Issue (1): 112-125.DOI: 10.11996/JG.j.2095-302X.2024010112
收稿日期:
2023-07-17
接受日期:
2023-10-12
出版日期:
2024-02-29
发布日期:
2024-02-29
第一作者:
崔克彬(1979-),男,讲师,博士。主要研究方向为数字图像处理与模式识别。E-mail:ncepuckb@163.com
Received:
2023-07-17
Accepted:
2023-10-12
Published:
2024-02-29
Online:
2024-02-29
First author:
CUI Kebin (1979-), lecturer, Ph.D. His main research interests cover digital image processing and pattern recognition. E-mail:ncepuckb@163.com
摘要:
针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YOLOv8。通过加入改进后的卷积注意力机制模块(CBAM)对密集目标更好的确定;通过将FPN结构改为BiFPN更加高效的提取上下文信息;通过增加自适应特征融合(ASFF)自动找出最适合的融合特征;通过将SPPF模块替换为精度更高的SimCSPSPPF模块。同时,针对微小物体检测,提出了四头ASFF预测头,可根据数据集特点进行替换。实验结果表明,MCB-FAH-YOLOv8算法在VOC2007数据集上检测精度(mAP)达到了88.8%,在NEU-DET钢铁缺陷检测数据集上检测精度(mAP)达到了81.8%,较基准模型分别提高了5.1%和3.4%,该算法在牺牲较少检测速度的情况下取得较高的检测精度,很好的平衡了算法的精度和速度。
中图分类号:
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125.
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n | 5.96 | 3.01 | 8.9 | 83.7 | 116 |
YOLOv8n-CA | 6.34 | 3.06 | 8.3 | 84.2 | 103 |
YOLOv8n-CBAM | 6.81 | 3.29 | 8.5 | 85.5 | 93 |
YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 |
表1 加入改进CBAM模块在VOC2007数据集实验
Table 1 Incorporating Improved CBAM Module in VOC2007 Dataset Experiments
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n | 5.96 | 3.01 | 8.9 | 83.7 | 116 |
YOLOv8n-CA | 6.34 | 3.06 | 8.3 | 84.2 | 103 |
YOLOv8n-CBAM | 6.81 | 3.29 | 8.5 | 85.5 | 93 |
YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 |
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 |
YOLOv8n-MCB-B2 | 9.07 | 4.41 | 9.6 | 87.0 | 94 |
YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 |
表2 加入BiFPN模块在VOC2007数据集实验
Table 2 Incorporate improve the BiFPN module in VOC2007 Dataset Experiments
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 |
YOLOv8n-MCB-B2 | 9.07 | 4.41 | 9.6 | 87.0 | 94 |
YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 |
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 |
YOLOv8n-MCB-BA | 11.70 | 5.73 | 11.8 | 88.5 | 81 |
表3 加入ASFF模块在VOC2007数据集实验
Table 3 Incorporate the ASFF module in VOC2007 Dataset Experiments
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 |
YOLOv8n-MCB-BA | 11.70 | 5.73 | 11.8 | 88.5 | 81 |
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 86.1 | 81 |
YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 |
表4 改为四头预测头在VOC2007数据集实验
Table 4 Changed to four-head prediction head in VOC2007 Dataset Experiments
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 86.1 | 81 |
YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 |
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 88.5 | 81 |
MCB-FAH-YOLOv8 | 12.4 | 6.06 | 12.1 | 88.8 | 80 |
表5 YOLOv3.0更改为SimCSPSPFF模块在VOC2007数据集实验
Table 5 YOLOv3.0 changed to SimCSPSPFF module in VOC2007 Dataset Experiments
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 88.5 | 81 |
MCB-FAH-YOLOv8 | 12.4 | 6.06 | 12.1 | 88.8 | 80 |
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 |
MCB-FAH-YOLOv8_FD | 12.7 | 6.15 | 17.4 | 87.0 | 60 |
表6 YOLOv5.0更改为SimCSPSPFF模块在VOC2007数据集实验
Table 6 YOLOv5.0 changed to SimCSPSPFF module in VOC2007 Dataset Experiments
算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|---|
YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 |
MCB-FAH-YOLOv8_FD | 12.7 | 6.15 | 17.4 | 87.0 | 60 |
算法模型 | 体积/MB | 参数量/M | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|
YOLOv8n | 5.96 | 3.01 | 78.4 | 116 |
MCB-FAH-YOLOv8 | 12.40 | 6.06 | 81.8 | 80 |
表7 NEU-DET数据集实验对比
Table 7 Experimental comparison of NEU-DET dataset
算法模型 | 体积/MB | 参数量/M | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|
YOLOv8n | 5.96 | 3.01 | 78.4 | 116 |
MCB-FAH-YOLOv8 | 12.40 | 6.06 | 81.8 | 80 |
算法模型 | mAP@0.5/% | Sc | Pa | Cr | In | Ps | Rs |
---|---|---|---|---|---|---|---|
Faster-RCNN | 77.5 | 96.1 | 93.9 | 33.5 | 86.3 | 90.0 | 65.4 |
SSD | 74.7 | 73.4 | 95.4 | 44.4 | 82.7 | 88.7 | 63.7 |
YOLOv3 | 73.4 | 82.0 | 91.3 | 37.5 | 74.3 | 84.8 | 70.2 |
YOLOv4 | 74.6 | 90.3 | 93.7 | 37.9 | 84.0 | 76.8 | 64.9 |
YOLOv5 | 75.1 | 89.9 | 94.0 | 38.4 | 81.7 | 82.6 | 63.8 |
YOLOv8n | 97.7 | 98.8 | 99.4 | 94.4 | 98.8 | 96.8 | 98.3 |
MCB-FAH-YOLOv8 | 98.6 | 99.2 | 99.5 | 97.3 | 98.7 | 97.7 | 99.2 |
表8 NEU-DET上检测效果
Table 8 Detection of effects on NEU-DET
算法模型 | mAP@0.5/% | Sc | Pa | Cr | In | Ps | Rs |
---|---|---|---|---|---|---|---|
Faster-RCNN | 77.5 | 96.1 | 93.9 | 33.5 | 86.3 | 90.0 | 65.4 |
SSD | 74.7 | 73.4 | 95.4 | 44.4 | 82.7 | 88.7 | 63.7 |
YOLOv3 | 73.4 | 82.0 | 91.3 | 37.5 | 74.3 | 84.8 | 70.2 |
YOLOv4 | 74.6 | 90.3 | 93.7 | 37.9 | 84.0 | 76.8 | 64.9 |
YOLOv5 | 75.1 | 89.9 | 94.0 | 38.4 | 81.7 | 82.6 | 63.8 |
YOLOv8n | 97.7 | 98.8 | 99.4 | 94.4 | 98.8 | 96.8 | 98.3 |
MCB-FAH-YOLOv8 | 98.6 | 99.2 | 99.5 | 97.3 | 98.7 | 97.7 | 99.2 |
算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8n | 79.4 | 87.1 | 70.4 | 74.8 | 79.5 | 79.4 | 78.4 |
YOLOv8n-CBAM | 79.4 | 86.9 | 70.5 | 75.2 | 80.2 | 79.4 | 78.5 |
YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 |
表9 加入改进CBAM模块在NEU-DET数据集实验
Table 9 Incorporating Improved CBAM Module in NEU-DET Dataset Experiments
算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8n | 79.4 | 87.1 | 70.4 | 74.8 | 79.5 | 79.4 | 78.4 |
YOLOv8n-CBAM | 79.4 | 86.9 | 70.5 | 75.2 | 80.2 | 79.4 | 78.5 |
YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 |
算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 |
YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 |
表10 YOLOv8n-MCB更改为SimCSPSPFF模块在NEU-DET数据集实验
Table 10 YOLOv8n-MCB changed to SimCSPSPFF module in NEU-DET Dataset Experiments
算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 |
YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 |
算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 |
MCB-FAH-YOLOv8 | 79.7 | 88.5 | 77.2 | 77.9 | 83.3 | 84.3 | 81.8 |
表11 加入BiFPN模块在NEU-DET数据集实验
Table 11 Incorporate improve the BiFPN module in NEU-DET Dataset Experiments
算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% |
---|---|---|---|---|---|---|---|
YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 |
MCB-FAH-YOLOv8 | 79.7 | 88.5 | 77.2 | 77.9 | 83.3 | 84.3 | 81.8 |
[1] | 张艳, 冯锋. 带钢表面缺陷检测技术探析[J]. 信息与电脑: 理论版, 2021, 33(11): 19-22. |
ZHANG Y, FENG F. Analysis of strip surface defect detection technology[J]. China Computer & Communication, 2021, 33(11): 19-22 (in Chinese). | |
[2] |
李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292.
DOI |
LI W G, YE X, ZHAO Y T, et al. Strip steel surface defect detection based on improved YOLOv3 algorithm[J]. Acta Electronica Sinica, 2020, 48(7): 1284-1292 (in Chinese). | |
[3] |
梁日强, 胡燕林, 蒋占四. 基于改进的残差收缩网络的带钢表面缺陷识别[J]. 组合机床与自动化加工技术, 2022(6): 82-85.
DOI |
LIANG R Q, HU Y L, JIANG Z S. Strip surface defect identification based on improved residual shrinkage network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(6): 82-85 (in Chinese). | |
[4] | 彭晏飞, 袁晓龙, 陈炎康, 等. 改进YOLOv5s的带钢表面缺陷检测方法[J/OL]. 机械科学与技术(2023-06-02) [2023-07- 01]. https://kns.cnki.net/kcms2/article/abstract?v=sf24_f5fySZD1- Ycih16WJXSfIVveZZx-CIfY7zktvjqzQn6B0DTDcZgNVLA0NIuChhowEzC5HzZY9pPVuTLKBnfsQHrTmDr0UAjhaYBQI51aIHBb882L1pGFuSBOaqzFrS6UO45b_s=&uniplatform=NZKPT&language=CHS. |
PENG Y F, YUAN X L, CHEN Y K, et al. Improved YOLOv5s strip surface defect detection method[J/OL]. Mechanical Science and Technology for Aerospace Engineering (2023-06-02) [2023-07-01]. https://kns.cnki.net/kcms2/article/abstract?v=sf24_f5fySZD1- Ycih16WJXSfIVveZZx-CIfY7zktvjqzQn6B0DTDcZgNVLA0NIuChhowEzC5HzZY9pPVuTLKBnfsQHrTmDr0UAjhaYBQI51aIHBb882L1pGFuSBOaqzFrS6UO45b_s=&uniplatform=NZKPT&language=CHS. (in Chinese). | |
[5] | 唐东林, 杨洲, 程衡, 等. 浅层卷积神经网络融合Transformer的金属缺陷图像识别方法[J]. 中国机械工程, 2022, 33(19): 2298-2305, 2316. |
TANG D L, YANG Z, CHENG H, et al. Metal defect image recognition method based on shallow CNN fusion transformer[J]. China Mechanical Engineering, 2022, 33(19): 2298-2305, 2316 (in Chinese).
DOI |
|
[6] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[7] | LI C Y, LI L L, GENG Y F, et al. YOLOv6 v3.0: a full-scale reloading[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2301.05586.pdf. |
[8] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[9] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10781-10790. |
[10] | LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1911.09516.pdf. |
[11] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2004.10934.pdf. |
[12] | ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1710.09412.pdf. |
[13] | YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 6022-6031. |
[14] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[15] | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]// European Conference on Computer Vision. Cham: Springer, 2014: 346-361. |
[16] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[17] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[18] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[19] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[20] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1804.02767.pdf. |
[21] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002. |
[22] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 x16 words: transformers for image recognition at scale[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2010.11929.pdf. |
[23] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[24] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3141-3149. |
[25] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2107.08430.pdf. |
[26] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2207.02696.pdf. |
[1] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
[2] | 罗智徽, 胡海涛, 马潇峰, 程文刚. 基于同质中间模态的跨模态行人再识别方法[J]. 图学学报, 2024, 45(4): 670-682. |
[3] | 魏敏, 姚鑫. 基于多尺度与注意力机制的两阶段风暴单体外推研究[J]. 图学学报, 2024, 45(4): 696-704. |
[4] | 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735. |
[5] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
[6] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J]. 图学学报, 2024, 45(4): 770-778. |
[7] | 赵磊, 李栋, 房建东, 曹琪. 面向交通标志的改进YOLO目标检测算法[J]. 图学学报, 2024, 45(4): 779-790. |
[8] | 李跃华, 仲新, 姚章燕, 胡彬. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445. |
[9] | 张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453. |
[10] | 李滔, 胡婷, 武丹丹. 结合金字塔结构和注意力机制的单目深度估计[J]. 图学学报, 2024, 45(3): 454-463. |
[11] | 艾列富, 陶勇, 蒋常玉. 基于全局注意力的正交融合图像描述符[J]. 图学学报, 2024, 45(3): 472-481. |
[12] | 路龙飞, 王峻峰, 赵世闻, 李广, 丁鑫涛. 基于力位感知技能学习的轴孔柔顺装配方法[J]. 图学学报, 2024, 45(2): 250-258. |
[13] | 郭宗洋, 刘立东, 蒋东华, 刘子翔, 朱熟康, 陈京华. 基于语义引导神经网络的人体动作识别算法[J]. 图学学报, 2024, 45(1): 26-34. |
[14] | 翟永杰, 赵晓瑜, 王璐瑶, 王亚茹, 宋晓轲, 朱浩硕. IDD-YOLOv7:一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101. |
[15] | 古天骏, 熊苏雅, 林晓. 基于SASGAN的戏剧脸谱多样化生成[J]. 图学学报, 2024, 45(1): 102-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||