图学学报 ›› 2024, Vol. 45 ›› Issue (4): 696-704.DOI: 10.11996/JG.j.2095-302X.2024040696
收稿日期:
2024-02-27
接受日期:
2024-05-20
出版日期:
2024-08-31
发布日期:
2024-09-03
第一作者:
魏敏(1978-),男,教授,博士。主要研究方向为图像处理与目标检测技术、3D仿真技术和虚拟现实应用技术研究。E-mail:weimin@cuit.edu.cn
基金资助:
Received:
2024-02-27
Accepted:
2024-05-20
Published:
2024-08-31
Online:
2024-09-03
First author:
WEI Min (1978-), professor, Ph.D. His main research interests cover image processing and object detection technology, 3D simulation technology and virtual reality application technology research. E-mail:weimin@cuit.edu.cn
Supported by:
摘要:
风暴是一种生命周期短、发生突然、空间尺度小的自然现象,常用雷达回波外推方法进行预测,但时序预测模型难以在众多特征中定位风暴关键信息,导致预测精度低,模型无法充分学习图像高频信息,导致预测细节缺失,结果模糊。为了提升预测性能,提出两阶段风暴单体外推框架。第一阶段使用多尺度模块提取多尺度信息,注意力机制挖掘影响预测的重要特征,使用时空长短期记忆单元进行序列预测。第二阶段对一阶段结果进行偏差矫正,使用频域损失丰富外推细节。实验结果表明,在雷达回波数据集上,与主流模型PredRNN-V2相比,该模型均方误差降低11.4%,SSIM提升4.3%,在风暴单体外推任务中表现优越。在Moving MNIST数据集上,均方误差降低4.95%,感知损失降低12.67%,SSIM提升至0.898,具有良好的时序预测能力。
中图分类号:
魏敏, 姚鑫. 基于多尺度与注意力机制的两阶段风暴单体外推研究[J]. 图学学报, 2024, 45(4): 696-704.
WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention[J]. Journal of Graphics, 2024, 45(4): 696-704.
图7 对比实验结果((a)预测图像;(b)预测图像与真实图像的差值)
Fig. 7 Comparative experimental results ((a) Predicted image; (b) Difference between predicted image and ground truth)
模型 | MSE | SSIM | LPIPS |
---|---|---|---|
SimVP | 3 629.6 | 0.913 | 0.147 |
TAU | 2 656.9 | 0.924 | 0.147 |
PredRNN-V2 | 2 962.4 | 0.892 | 0.127 |
本文模型 | 2 623.8 | 0.932 | 0.127 |
表1 不同模型在雷达回波数据集上的客观评价指标
Table 1 Objective evaluation metrics of different models on radar echo datasets
模型 | MSE | SSIM | LPIPS |
---|---|---|---|
SimVP | 3 629.6 | 0.913 | 0.147 |
TAU | 2 656.9 | 0.924 | 0.147 |
PredRNN-V2 | 2 962.4 | 0.892 | 0.127 |
本文模型 | 2 623.8 | 0.932 | 0.127 |
模型 | MSE | SSIM | LPIPS |
---|---|---|---|
ConvLSTM | 103.3 | 0.707 | 0.156 |
PredRNN-V2 | 48.4 | 0.891 | 0.071 |
本文模型 | 46.0 | 0.898 | 0.062 |
表2 不同模型在Moving MNIST数据集上的客观评价指标
Table 2 Objective evaluation metrics of different models on the moving mnist dataset
模型 | MSE | SSIM | LPIPS |
---|---|---|---|
ConvLSTM | 103.3 | 0.707 | 0.156 |
PredRNN-V2 | 48.4 | 0.891 | 0.071 |
本文模型 | 46.0 | 0.898 | 0.062 |
不同尺度组合 | MSE | SSIM | LPIPS |
---|---|---|---|
单尺度 | 2 903.2 | 0.918 | 0.101 |
rate=1,6 | 2 800.1 | 0.923 | 0.105 |
rate=1,6,12 | 2 710.5 | 0.925 | 0.116 |
rate=1,6,12,18 | 2 623.8 | 0.932 | 0.127 |
表3 不同尺度组合的评价指标
Table 3 The evaluation indicators of combination of different scales
不同尺度组合 | MSE | SSIM | LPIPS |
---|---|---|---|
单尺度 | 2 903.2 | 0.918 | 0.101 |
rate=1,6 | 2 800.1 | 0.923 | 0.105 |
rate=1,6,12 | 2 710.5 | 0.925 | 0.116 |
rate=1,6,12,18 | 2 623.8 | 0.932 | 0.127 |
不同注意力 | MSE | SSIM | LPIPS |
---|---|---|---|
无注意力 | 2 919.1 | 0.895 | 0.103 |
仅通道注意力 | 2 810.7 | 0.920 | 0.117 |
仅空间注意力 | 2 812.8 | 0.925 | 0.116 |
通道与空间注意力 | 2 623.8 | 0.932 | 0.127 |
表4 使用不同注意力机制时的评价指标
Table 4 Evaluation metrics for different attention mechanisms
不同注意力 | MSE | SSIM | LPIPS |
---|---|---|---|
无注意力 | 2 919.1 | 0.895 | 0.103 |
仅通道注意力 | 2 810.7 | 0.920 | 0.117 |
仅空间注意力 | 2 812.8 | 0.925 | 0.116 |
通道与空间注意力 | 2 623.8 | 0.932 | 0.127 |
参数 | MSE | SSIM | LPIPS |
---|---|---|---|
单阶段 | 2 754.2 | 0.924 | 0.115 |
两阶段 | 2 623.8 | 0.932 | 0.127 |
表5 单阶段和两阶段模型的评价指标
Table 5 Evaluation metrics for single-stage and two-stage models
参数 | MSE | SSIM | LPIPS |
---|---|---|---|
单阶段 | 2 754.2 | 0.924 | 0.115 |
两阶段 | 2 623.8 | 0.932 | 0.127 |
参数 | MSE | SSIM | LPIPS |
---|---|---|---|
基线 | 2 962.4 | 0.892 | 0.127 |
基线+多尺度 | 2 912.5 | 0.913 | 0.104 |
基线+注意力 | 2 913.1 | 0.921 | 0.101 |
基线+多尺度+注意力 | 2 754.2 | 0.924 | 0.115 |
基线+多尺度+注意力+二阶段 | 2 623.8 | 0.932 | 0.127 |
表6 整体架构的消融实验
Table 6 Ablation study of the overall architecture
参数 | MSE | SSIM | LPIPS |
---|---|---|---|
基线 | 2 962.4 | 0.892 | 0.127 |
基线+多尺度 | 2 912.5 | 0.913 | 0.104 |
基线+注意力 | 2 913.1 | 0.921 | 0.101 |
基线+多尺度+注意力 | 2 754.2 | 0.924 | 0.115 |
基线+多尺度+注意力+二阶段 | 2 623.8 | 0.932 | 0.127 |
[1] | 金锐, 方璘王昊. 基于频谱分解和注意力机制的雷达回波外推算法[J]. 科技和产业, 2023, 23(8): 259-267. |
JIN R, FANG L W H. Radar echo extrapolation algorithm based on spectrum decomposition and spatiotemporal attention mechanism[J]. Science Technology and Industry, 2023, 23(8): 259-267 (in Chinese). | |
[2] | RAHAMAN N, BARATIN A, ARPIT D, et al. On the spectral bias of neural networks[EB/OL]. [2023-12-10]. http://arxiv.org/abs/1806.08734. |
[3] |
ZOU H B, WU S S, SHAN J S, et al. A method of radar echo extrapolation based on TREC and Barnes filter[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(9): 1713-1727.
DOI |
[4] | 鹿天柱, 钱晓超, 何舒, 等. 一种基于深度学习的时间序列预测方法[J]. 控制与决策, 2021, 36(3): 645-652. |
LU T Z, QIAN X C, HE S, et al. A time series prediction method based on deep learning[J]. Control and Decision, 2021, 36(3): 645-652 (in Chinese). | |
[5] | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2023-12-10]. http://arxiv.org/abs/1803.0127.1 |
[6] | 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用[J]. 应用气象学报, 2019, 30(1): 61-69. |
HAN F, LONG M S, LI Y A, et al. The application of recurrent neural network to nowcasting[J]. Journal of Applied Meteorological Science, 2019, 30(1): 61-69 (in Chinese). | |
[7] | ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting? [EB/OL]. [2023-12-10]. http://arxiv.org/abs/2205.13504. |
[8] | WU H X, XU J H, WANG J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[EB/OL]. [2023-12-10]. http://arxiv.org/abs/2106.13008. |
[9] | ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[EB/OL]. [2023-12-10]. http://arxiv.org/abs/2201.12740. |
[10] | LI J C, WANG Y J, MCAULEY J. Time interval aware self-attention for sequential recommendation[C]// The 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 322-330. |
[11] | 王英伟, 马树才. 基于ARIMA和LSTM混合模型的时间序列预测[J]. 计算机应用与软件, 2021, 38(2): 291-298. |
WANG Y W, MA S C. Time series forecasting based on arimadlstm hybrid model[J]. Computer Applications and Software, 2021, 38(2): 291-298 (in Chinese). | |
[12] | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[EB/OL]. [2023-12-10]. http://arxiv.org/abs/1506.04214. |
[13] | 王天雷. 基于长短时记忆网络的雷达回波外推关键技术研究[D]. 南京: 南京信息工程大学, 2022. |
WANG T L. Research on key technologies of radar echo extrapolation based on long-short memory network[D]. Nanjing: Nanjing University of Information Science & Technology, 2022 (in Chinese). | |
[14] | XU Z, DU J, WANG J J, et al. Satellite image prediction relying on GAN and LSTM neural networks[C]// 2019 IEEE International Conference on Communications. New York: IEEE Press, 2019: 1-6. |
[15] | WANG Y, WU H, ZHANG J, et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(2): 2208-2225. |
[16] | 罗健文, 邹茂扬, 杨昊, 等. 面向降雨预报的雷达回波预测序列外推方法[J]. 计算机应用研究, 2024, 41(4): 1138-1142. |
LUO J W, ZOU M Y, YANG H, et al. Research on extrapolation of radar echo prediction sequence for rainfall prediction[J]. Application Research of Computers, 2024, 41(4): 1138-1142 (in Chinese). | |
[17] | 徐泽鑫, 杨磊, 李康顺. 较短的长序列时间序列预测模型[EB/OL]. [2023-12-10]. https://link.cnki.net/urlid/51.1307.TP.20230817.1343.005. |
XU Z., YANG L., LI K. Short-term long sequence time series prediction model[EB/OL]. [2023-12-10]. https://link.cnki.net/urlid/51.1307.TP.20230817.1343.005 (in Chinese). | |
[18] | ZHENG J B, WANG Y L, TAN C, et al. CVT-SLR: contrastive visual-textual transformation for sign language recognition with variational alignment[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23141-23150. |
[19] | 李克文, 于明洋. 基于双重注意力机制改进的DA-LSTM时间序列预测模型[J]. 计算机应用与软件, 2023, 40(2): 253-258, 349. |
LI K W, YU M Y. An improved da-lstm time series prediction model based on dual attention mechanism[J]. Computer Applications and Software, 2023, 40(2): 253-258, 349 (in Chinese). | |
[20] | LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 6153-6162. |
[21] | 程勇, 钱坤, 康志明, 等. 一种雷达回波外推的注意力融合和信息回忆的LSTM方法[J]. 热带气象学报, 2023, 39(5): 653-663. |
CHENG Y, QIAN K, KANG Z M, et al. An attention fusion and information recall lstm method for radar echo extrapolation[J]. Journal of Tropical Meteorology, 2023, 39(5): 653-663 (in Chinese). | |
[22] | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023. |
[23] | WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. |
[24] | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539. |
[25] | JING Y H, LIN L P, LI X H, et al. An attention mechanism based convolutional network for satellite precipitation downscaling over China[J]. Journal of Hydrology, 2022, 613: 128388. |
[26] | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2023-12-10]. https://arxiv.org/abs/1706.05587v3. |
[27] |
孔震, 张华鲁, 岳圣凯, 等. 基于时域卷积网络的多尺度双线性天气预测模型[J]. 图学学报, 2020, 41(5): 764-770.
DOI |
KONG Z, ZHANG H L, YUE S K, et al. Multi-scale and bilinear models based on temporal convolutional network[J]. Journal of Graphics, 2020, 41(5): 764-770 (in Chinese).
DOI |
|
[28] | YAO J L, XU F F, QIAN Z, et al. A forecast-refinement neural network based on DyConvGRU and U-net for radar echo extrapolation[J]. IEEE Access, 2023, 11: 53249-53261. |
[29] | GAO Z Y, TAN C, WU L R, et al. SimVP: simpler yet better video prediction[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 3160-3170. |
[30] | TAN C, GAO Z Y, WU L R, et al. Temporal attention unit: towards efficient spatiotemporal predictive learning[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 18770-18782. |
[31] | WANG Y B, ZHANG J J, ZHU H Y, et al. Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9146-9154. |
[32] | 贺琪, 李汶龙, 宋巍, 等. 结合残差时空注意力机制的海面温度预测算法[J]. 图学学报, 2022, 43(4): 677-684. |
HE Q, LI W L, SONG W, et al. Sea surface temperature prediction algorithm combined with residual spatial-temporal attention mechanism[J]. Journal of Graphics, 2022, 43(4): 677-684 (in Chinese). |
[1] | 胡凤阔 , 叶兰 , 谭显峰 , 张钦展 , 胡志新 , 方清 , 王磊 , 满孝锋 . 一种基于改进 YOLOv8 的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[2] | 刘义艳 , 郝婷楠 , 贺晨 , 常英杰 . 基于 DBBR-YOLO 的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[3] | 吴沛宸 , 袁立宁 , 胡皓 , 刘钊 , 郭放 . 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[4] | 刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956. |
[5] | 章东平 , 魏杨悦 , 何数技 , 徐云超 , 胡海苗 , 黄文君 . 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[6] | 谢国波, 林松泽, 林志毅, 吴陈锋, 梁立辉. 基于改进YOLOv7-tiny的道路病害检测算法[J]. 图学学报, 2024, 45(5): 987-997. |
[7] | 熊超 , 王云艳 , 罗雨浩 . 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
[8] | 彭文, 林金炜. 基于空间信息关注和纹理增强的短小染色体分类方法[J]. 图学学报, 2024, 45(5): 1017-1029. |
[9] | 刘宗明 , 洪唯 , 龙睿 , 祝越 , 张小宇 . 基于自注意机制的乳源瑶绣自动生成与应用研究[J]. 图学学报, 2024, 45(5): 1096-1105. |
[10] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
[11] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
[12] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J]. 图学学报, 2024, 45(4): 770-778. |
[13] | 赵磊, 李栋, 房建东, 曹琪. 面向交通标志的改进YOLO目标检测算法[J]. 图学学报, 2024, 45(4): 779-790. |
[14] | 李跃华, 仲新, 姚章燕, 胡彬. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445. |
[15] | 张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||