欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (4): 650-658.DOI: 10.11996/JG.j.2095-302X.2024040650

• 图像处理与计算机视觉 • 上一篇    下一篇

改进YOLOv7遥感图像目标检测算法

李大湘(), 吉展, 刘颖, 唐垚   

  1. 西安邮电大学通信与信息工程学院,陕西 西安 710121
  • 收稿日期:2023-07-17 接受日期:2024-04-09 出版日期:2024-08-31 发布日期:2024-09-02
  • 第一作者:李大湘(1974-),男,副教授,博士。主要研究方向为遥感图像分类、目标检测与跟踪、医学图像分割等。E-mail:www_ldx@163.com
  • 基金资助:
    国家自然科学基金项目(62071379);陕西省自然科学基金项目(2019JM-604)

Improving YOLOv7 remote sensing image target detection algorithm

LI Daxiang(), JI Zhan, LIU Ying, TANG Yao   

  1. School of Telecommunication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an Shaanxi 710121, China
  • Received:2023-07-17 Accepted:2024-04-09 Published:2024-08-31 Online:2024-09-02
  • First author:LI Daxiang (1974-), associate professor, Ph.D. His main research interests cover remote sensing image classification, target detection and tracking, medical image segmentation, etc. E-mail:www_ldx@163.com
  • Supported by:
    National Natural Science Foundation of China(62071379);Natural Science Foundation of Shaanxi Province(2019JM-604)

摘要:

针对遥感图像中目标尺度变化大和背景复杂导致检测精度低的问题,设计了一种改进YOLOv7目标检测算法。首先,为了缓解复杂背景对检测器的干扰,设计了一个注意力引导的高效层聚合网络(ALAN),以优化多路径网络使其更聚焦前景目标而降低背景的影响;其次,为了降低目标尺度变化大对检测精度的影响,设计了一种注意力多尺度特征增强(AMSFE)模块,用于扩展主干网络输出特征的感受野,以加强网络对尺度变化大目标的特征表征能力;最后,引入旋转边界框损失函数,以获取任意朝向物体的精确位置信息。在DIOR-R数据集上的实验结果表明,该算法mAP达到了64.51%,相比于基线原始YOLOv7算法提高了3.43%,且优于其他同类算法,能够适应遥感图像中多尺度和复杂背景的目标检测任务。

关键词: 遥感, 目标检测, 特征增强, 注意力机制, YOLOv7

Abstract:

In response to the problem of low detection accuracy caused by significant object scale variations and complex backgrounds in remote sensing images, an improved YOLOv7 object detection algorithm was designed. Firstly, in order to alleviate the interference of complex backgrounds on the detector, an attention-guided efficient layer aggregation network (ALAN) was designed to optimize the multi-path network to focus more on foreground objects, thereby reducing the impact of background. Secondly, in order to reduce the impact of significant object scale variations on detection accuracy, an attention multi-scale feature enhancement (AMSFE) module was designed to expand the receptive field of the backbone network output features, enhancing the network’s feature representation ability for objects with substantial scale variations. Finally, a rotating bounding box loss function was introduced to obtain precise location information of objects in any orientation. The experimental results on the DIOR-R dataset demonstrated that the proposed algorithm achieved a mean average precision (mAP) of 64.51%, an improvement of 3.43% over the baseline original YOLOv7 algorithm. Furthermore, it outperformd other similar algorithms and was capable of handling object detection tasks in remote sensing images with multi-scale and complex backgrounds.

Key words: remote sensing, object detection, feature enhancement, attention mechanism, YOLOv7

中图分类号: