[1] |
ZHANG F, WU C S, WANG B B, et al. SMARS: sleep monitoring via ambient radio signals[J]. IEEE Transactions on Mobile Computing, 2021, 20(1): 217-231.
|
[2] |
ZENG X L, WANG B B, WU C S, et al. Intelligent Wi-Fi based child presence detection system[C]// 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2022: 11-15.
|
[3] |
XIE X C, ZHANG D H, LI Y D, et al. Robust WiFi respiration sensing in the presence of interfering individual[J]. IEEE Transactions on Mobile Computing, 2024, 23(8): 8447-8462.
|
[4] |
ZHANG Y W, HAN F Y, YANG P L, et al. Wi-Cyclops: room-scale WiFi sensing system for respiration detection based on single-antenna[J]. ACM Transactions on Sensor Networks, 2024, 20(4): 94.
|
[5] |
LI B F, REN Y L, WANG Y C, et al. SpaceBeat: identity-aware multi-person vital signs monitoring using commodity WiFi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2024, 8(3): 113.
|
[6] |
ZHANG S J, ZHENG T Y, WANG H B, et al. Quantifying the physical separability of RF-based multi-person respiration monitoring via SINR[C]// The 20th ACM Conference on Embedded Networked Sensor Systems. New York: ACM, 2022: 47-60.
|
[7] |
HU J Y, JIANG H B, ZHENG T Y, et al. M2-Fi: multi-person respiration monitoring via handheld WiFi devices[C]// 2024 IEEE Conference on Computer Communications. New York: IEEE Press, 2024: 1221-1230.
|
[8] |
WU Y, LI F, XIE Y D, et al. SymListener: detecting respiratory symptoms via acoustic sensing in driving environments[J]. ACM Transactions on Sensor Networks, 2023, 19(1): 3.
|
[9] |
LIU J, WANG Y, CHEN Y Y, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]// The 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2015: 267-276.
|
[10] |
LIU J, CHEN Y Y, WANG Y, et al. Monitoring vital signs and postures during sleep using WiFi signals[J]. IEEE Internet of Things Journal, 2018, 5(3): 2071-2084.
|
[11] |
YUE S C, HE H, WANG H, et al. Extracting multi-person respiration from entangled RF signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(2): 86.
|
[12] |
ADIB F, MAO H Z, KABELAC Z, et al. Smart homes that monitor breathing and heart rate[C]// The 33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM, 2015: 837-846.
|
[13] |
HSU C Y, AHUJA A, YUE S C, et al. Zero-effort in-home sleep and insomnia monitoring using radio signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 59.
|
[14] |
WU D, ZENG Y W, ZHANG F S, et al. WiFi CSI-based device-free sensing: from Fresnel zone model to CSI-ratio model[J]. CCF Transactions on Pervasive Computing and Interaction, 2022, 4(1): 88-102.
|
[15] |
YU B H, WANG Y X, NIU K, et al. WiFi-Sleep: sleep stage monitoring using commodity Wi-Fi devices[J]. IEEE Internet of Things Journal, 2021, 8(18): 13900-13913.
|
[16] |
WANG H, ZHANG D Q, MA J Y, et al. Human respiration detection with commodity WiFi devices: do user location and body orientation matter?[C]// 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2016: 25-36.
|
[17] |
ZENG Y W, WU D, GAO R Y, et al. FullBreathe: full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 148.
|
[18] |
LI X, ZHANG D Q, XIONG J, et al. Training-free human vitality monitoring using commodity Wi-Fi devices[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 121.
|
[19] |
ZHANG F S, ZHANG D Q, XIONG J, et al. From Fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(1): 53.
|
[20] |
ZENG Y W, WU D, XIONG J, et al. FarSense: pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 121.
|
[21] |
谢磊, 王楚豫, 宁静仪. 见微知著: 基于无线信号的微状态感知[J]. 中国计算机学会通讯, 2024, 20(3): 16-21.
|
|
XIE L, WANG C Y, NING J Y. Micro state sensing based on wireless signal[J]. Communications of the CCF, 2024, 20(3): 16-21 (in Chinese).
|
[22] |
卢洋, 陈林慧, 姜晓恒, 等. SDENet: 基于多尺度注意力质量感知的合成缺陷数据评价网络[J]. 图学学报, 2025, 46(1): 94-103.
DOI
|
|
LU Y, CHEN L H, JIANG Y H, et at. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception[J]. Journal of Graphics, 2025, 46(1): 94-103 (in Chinese).
DOI
|
[23] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
|
[24] |
王欣雨, 刘慧, 朱积成, 等. 基于高低频特征分解的深度多模态医学图像融合网络[J]. 图学学报, 2024, 45(1): 65-77.
DOI
|
|
WANG X Y, LIU H, ZHU J C, et al. Deep multimodal medical image fusion network based on high-low frequency feature decomposition[J]. Journal of Graphics, 2024, 45(1): 65-77 (in Chinese).
DOI
|
[25] |
KOMATY A, BOUDRAA A O, AUGIER B, et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 27-34.
|
[26] |
AYENU-PRAH A, ATTOH-OKINE N. A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition[J]. Advances in Adaptive Data Analysis, 2010, 2(1): 1-24.
|