欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (4): 847-854.DOI: 10.11996/JG.j.2095-302X.2025040847

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于经验模态分解的加权呼吸波形重构算法

郭林林(), 姚敏, 张文清, 张佳, 孙建德()   

  1. 山东师范大学信息科学与工程学院,山东 济南 250358
  • 收稿日期:2024-09-30 修回日期:2025-05-29 出版日期:2025-08-30 发布日期:2025-08-11
  • 通讯作者:孙建德(1978-),男,教授,博士。主要研究方向为多媒体信息处理、分析、理解及应用。E-mail:jiandesun@hotmail.com
  • 第一作者:郭林林(1988-),女,讲师,博士。主要研究方向为新一代信息技术下的智能无线感知技术。E-mail:linlin_teresa@sdnu.edu.cn
  • 基金资助:
    山东省自然科学基金青年面上专项(ZR2024QF275);济南市“新高校20条”-科研带头人工作室项目(2021GXRC081)

Weighted respiration waveform reconstruction algorithm based on empirical modal decomposition

GUO Linlin(), YAO Min, ZHANG Wenqing, ZHANG Jia, SUN Jiande()   

  1. School of Information Science and Engineering, Shandong Normal University, Jinan Shandong 250358, China
  • Received:2024-09-30 Revised:2025-05-29 Published:2025-08-30 Online:2025-08-11
  • First author:GUO Linlin (1988-), lecturer, Ph.D. Her main research interests cover intelligent wireless sensing technologies in the next-generation IT. E-mail:linlin_teresa@sdnu.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2024QF275);Jinan City’s “New Higher Education Institutions 20 Measures” Funding Project - Research Leader’s Studio(2021GXRC081)

摘要:

基于Wi-Fi信号的呼吸速率估计技术凭借其非接触式的优势吸引了学术界和工业界的广泛关注。然而,如何提取高质量呼吸波形确保呼吸速率估计的精度是一直困扰研究人员的难题。提出了一种基于经验模态分解(EMD)的加权呼吸波形重构算法(WEMD),旨在提高不同环境下个体呼吸速率估计的精准度和鲁棒性。首先,利用呼吸信噪比(BNR)和I/O分解及投影方法,筛选出周期性较好的子载波并生成多条呼吸波形。其次,通过主成分分析(PCA)技术校准呼吸波形、经验模态分解方法分解和估计不同频率分量与原始呼吸模式的相关性。最后,通过设计的自适应加权算法对不同呼吸波形进行重构融合实现高精准的个体呼吸速率估计。实验结果表明,WEMD算法在4个室内环境下获得平均94%以上的人体呼吸速率估计精准度。该方法不仅有效地解决低质量Wi-Fi数据对呼吸速率估计精度的影响,而且也能够精准估计不均匀呼吸的速率,实现在不同环境下高精度地监测人体呼吸,以保证估计误差在10%以内。

关键词: 无线感知, 信道状态信息, 经验模态分解, 呼吸波形重构, 呼吸速率估计

Abstract:

Respiration rate estimation based on Wi-Fi signals has garnered significant attention from academic and industrial communities due to its non-contact advantage. However, extracting high-quality respiration waveforms to ensure accurate respiration rate estimation has been a persistent challenge for researchers. In this paper, a weighted respiration waveform reconstruction algorithm based on empirical mode decomposition (EMD), referred to as (weighted empirical mode decomposition) WEMD, was proposed to improve the accuracy and robustness of respiration rate estimation under different environments. First, subcarriers with better periodicity were selected using breathing-to-noise ratio (BNR) and I/O decompose methods, and various respiration waveforms were generated. Second, principal component analysis (PCA) was applied to calibrate respiration waveforms, and EMD was employed to decompose respiration waveforms. Finally, an adaptive weighting mechanism was designed to reconstruct them by estimating the correlation between different frequency components and the original respiratory pattern. Experimental results demonstrated that the WEMD algorithm achieved an average respiration estimation accuracy of over 94% in four indoor experimental environments. The WEMD algorithm not only effectively addressed the impact of the low-quality Wi-Fi data on personal respiration estimation, but also accurately estimated irregular respiration rates, achieving high-precision respiratory rate monitoring across various environments, with an error below 10%.

Key words: wireless sensing, channel state information, empirical mode decomposition, respiratory waveform reconstruction, respiration rate estimation

中图分类号: