| [1] |
ERINGEN A C. Theory of micropolar elasticity[M]. New York: Springer, 1999: 101-248.
|
| [2] |
AMBARTSUMIAN S A. Micropolar theory of shells and plates[M]. Cham: Springer International Publishing, 2021: 21-24.
|
| [3] |
陈东阳. 微极弹性复合材料之理论解析架构与应用[EB/OL]. (2016-05-24) [2025-04-15]. http://140.116.207.99/handle/987654321/163086.
|
|
CHEN D Y. Micropolar elastic composite materials with chirality: theoretical frameworks and applications[EB/OL]. (2016-05-24) [2025-04-15]. http://140.116.207.99/handle/987654321/163086 (in Chinese).
|
| [4] |
王洪生. 微极弹性力学的虚功原理[J]. 山东建筑工程学院学报, 1993, 8(4): 1-5.
|
|
WANG H S. Principle of admissible work of microelasticity mechanics[J]. Journal of Shandong Architectural and Civil Engineering Institute, 1993, 8(4): 1-5 (in Chinese).
|
| [5] |
YAO Y, ZHOU Y, CHEN L H, et al. A multifunctional three-dimensional lattice material integrating auxeticity, negative compressibility and negative thermal expansion[J]. Composite Structures, 2024, 337: 118032.
DOI
URL
|
| [6] |
YAO Y, HE L H, JIN J H, et al. A novel design of mechanical metamaterial incorporating multiple negative indexes[J]. Materials Research Express, 2023, 10(5): 055801.
DOI
|
| [7] |
吴浩宇, 杨小超, 王伟, 等. 基于运动学原理的复合材料编织成型工艺仿真技术研究[J]. 图学学报, 2025, 46(5): 1061-1071.
DOI
|
|
WU H Y, YANG X C, WANG W, et al. Simulation technology for braiding process of composite materials based on kinematic principles[J]. Journal of Graphics, 2025, 46(5): 1061-1071 (in Chinese).
DOI
|
| [8] |
HUANG L H, YUAN H, ZHAO H Y. An FEM-based homogenization method for orthogonal lattice metamaterials within micropolar elasticity[J]. International Journal of Mechanical Sciences, 2023, 238: 107836.
DOI
URL
|
| [9] |
MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448.
DOI
URL
|
| [10] |
ALBERTINI G, ELBANNA A E, KAMMER D S. A three- dimensional hybrid finite element—Spectral boundary integral method for modeling earthquakes in complex unbounded domains[J]. International Journal for Numerical Methods in Engineering, 2021, 122(23): 6905-6923.
DOI
URL
|
| [11] |
薛雨彤, 王爱增, 岳怡珂, 等. 基于等几何法和模拟退火的复杂壳结构分析及优化[J]. 图学学报, 2024, 45(3): 575-584.
DOI
|
|
XUE Y T, WANG A Z, YUE Y K, et al. Complex shell structure analysis and optimization based on isogeometric analysis and simulated annealing algorithm[J]. Journal of Graphics, 2024, 45(3): 575-584 (in Chinese).
DOI
|
| [12] |
YAO Y, NI Y, HE L H. Rutile-mimic 3D metamaterials with simultaneously negative Poisson's ratio and negative compressibility[J]. Materials & Design, 2021, 200: 109440.
|
| [13] |
陈震, 周金宇. 材料二维微结构仿真随机概率圆优化填充算法[J]. 图学学报, 2015, 36(6): 944-949.
DOI
|
|
CHEN Z, ZHOU J Y. Random circles optimization filling algorithm of material two dimensional microstructures simulation[J]. Journal of Graphics, 2015, 36(6): 944-949 (in Chinese).
|
| [14] |
江见鲸, 何放龙, 何益斌, 等. 有限元法及其应用[M]. 北京: 机械工业出版社, 2006: 75-83.
|
|
JIANG J J, HE F L, HE Y B, et al. Finite element method and application[M]. Beijing: China Machine Press, 2006: 75-83 (in Chinese).
|
| [15] |
YAO Y, NI Y, HE L H. Unexpected bending behavior of architected 2D lattice materials[J]. Science Advances, 2023, 9(25): eadg3499.
|
| [16] |
许德胜, 凌道盛, 王燕. 八节点非协调实体板单元[J]. 计算力学学报, 2009, 26(2): 264-269.
|
|
XU D S, LING D S WANG Y, et al. Eight node incompatible solid-plate element[J]. Chinese Journal of Computational Mechanics, 2009, 26(2): 264-269 (in Chinese).
|
| [17] |
GRBČIĆ S, IBRAHIMBEGOVIĆ A, JELENIĆ G. Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes[J]. Computers & Structures, 2018, 205: 1-14.
DOI
URL
|
| [18] |
FLANAGAN D P, BELYTSCHKO T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
DOI
URL
|
| [19] |
KREJA I, CYWIŃSKI Z. Is reduced integration just a numerical trick[J]. Computers & Structures, 1988, 29(3): 491-496.
DOI
URL
|
| [20] |
KOHANSAL-VAJARGAH M, ANSARI R. Quadratic tetrahedral micropolar element for the vibration analysis of three-dimensional micro-structures[J]. Thin-Walled Structures, 2021, 167: 108152.
DOI
URL
|
| [21] |
YAO Y, ZHAO X, CHEN L H, et al. Reduced-integration hexahedral finite element for static and vibration analysis of micropolar continuum[J]. Finite Elements in Analysis and Design, 2025, 251: 104412.
DOI
URL
|
| [22] |
AMEZCUA H R, AYALA A G. A computationally efficient numerical integration scheme for non-linear planestress/strain FEM applications using one-point constitutive model evaluation[J]. Structural Engineering and Mechanics, 2023, 85(1): 89-104.
|
| [23] |
GRBAC L, JELENIC G, RIBARIĆ D, et al. Hexahedral finite elements with enhanced fixed-pole interpolation for linear static and vibration analysis of 3D micropolar continuum[J]. International Journal for Numerical Methods in Engineering, 2024, 125(8): e7440.
DOI
URL
|
| [24] |
Taihu Laboratory of Deepsea Technological Science. SAM[EB/OL]. [2025-04-23]. https://www.taihulab.com.cn/info/167.html.
|