Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 482-491.DOI: 10.11996/JG.j.2095-302X.2023030482
Previous Articles Next Articles
XIAO Tian-xing1,2(), WU Jing-jing1,2(
)
Received:
2022-09-09
Accepted:
2022-11-28
Online:
2023-06-30
Published:
2023-06-30
Contact:
WU Jing-jing (1982-), associate professor, Ph.D. Her main research interests cover image processing, pattern recognition, etc. E-mail:wjjlady720@jiangnan.edu.cn
About author:
XIAO Tian-xing (1998-), master student. His main research interests cover image processing, machine learning and pattern recognition. E-mail:6200810103@stu.jiangnan.edu.cn
Supported by:
CLC Number:
XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention[J]. Journal of Graphics, 2023, 44(3): 482-491.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030482
主干网络 | mIoU | Dice | F1 Score | FPS |
---|---|---|---|---|
ResNet14 | 0.788 0 | 0.881 5 | 0.894 8 | 13.70 |
ResNet18 | 0.801 0 | 0.889 5 | 0.903 5 | 12.24 |
ResNet34 | 0.792 8 | 0.883 8 | 0.897 3 | 8.80 |
Table 1 Effect of different backbone on network
主干网络 | mIoU | Dice | F1 Score | FPS |
---|---|---|---|---|
ResNet14 | 0.788 0 | 0.881 5 | 0.894 8 | 13.70 |
ResNet18 | 0.801 0 | 0.889 5 | 0.903 5 | 12.24 |
ResNet34 | 0.792 8 | 0.883 8 | 0.897 3 | 8.80 |
注意力模块 | mIoU | Dice | F1 Score |
---|---|---|---|
None | 0.785 0 | 0.878 6 | 0.889 5 |
CBAM | 0.790 6 | 0.880 9 | 0.892 8 |
Proposed | 0.801 0 | 0.889 5 | 0.903 5 |
Table 2 Effect of attention module on network
注意力模块 | mIoU | Dice | F1 Score |
---|---|---|---|
None | 0.785 0 | 0.878 6 | 0.889 5 |
CBAM | 0.790 6 | 0.880 9 | 0.892 8 |
Proposed | 0.801 0 | 0.889 5 | 0.903 5 |
方法 | mIoU | Dice | F1 Score | 收敛轮数 |
---|---|---|---|---|
BCE Loss | 0.795 9 | 0.884 7 | 0.897 4 | - |
BID Loss (1:1:1) | 0.786 7 | 0.881 2 | 0.894 4 | - |
BID Loss (2:1:1) | 0.800 4 | 0.890 1 | 0.903 2 | 102 |
BID Loss (2:1:1) +DS | 0.801 0 | 0.889 5 | 0.903 5 | 56 |
Table 3 Effect of loss function and deep supervision
方法 | mIoU | Dice | F1 Score | 收敛轮数 |
---|---|---|---|---|
BCE Loss | 0.795 9 | 0.884 7 | 0.897 4 | - |
BID Loss (1:1:1) | 0.786 7 | 0.881 2 | 0.894 4 | - |
BID Loss (2:1:1) | 0.800 4 | 0.890 1 | 0.903 2 | 102 |
BID Loss (2:1:1) +DS | 0.801 0 | 0.889 5 | 0.903 5 | 56 |
应用类型 | 方法 | 分割精度 | 算法效率 | ||||
---|---|---|---|---|---|---|---|
mIoU | Dice | F1 Score | Params(M) | FLOPs(G) | FPS | ||
打码字符分割 | 大津双阈值法 | 0.058 3 | 0.101 5 | 0.113 8 | - | - | 48.01 |
自适应阈值分割+连通域去噪[ | 0.103 5 | 0.178 5 | 0.200 2 | - | - | 0.57 | |
高斯差分尺度空间+最大熵法[ | 0.066 3 | 0.107 3 | 0.120 9 | - | - | 2.12 | |
医学分割 | UNet[ | 0.779 9 | 0.873 3 | 0.886 2 | 17.27 | 751.54 | 4.70 |
UNet++[ | 0.756 4 | 0.850 0 | 0.861 9 | 9.16 | 653.20 | 5.19 | |
MSR[ | 0.781 0 | 0.876 2 | 0.888 0 | 17.27 | 751.54 | 2.33 | |
RA-UNet[ | 0.782 7 | 0.876 3 | 0.890 1 | 11.62 | 306.88 | 11.00 | |
改进型UNet[ | 0.798 9 | 0.885 3 | 0.899 7 | 34.87 | 1570.91 | 2.99 | |
RV-GAN[ | 0.799 8 | 0.884 1 | 0.898 3 | 14.34 | 289.29 | 11.12 | |
Res18-UNet (proposed) | 0.801 0 | 0.889 5 | 0.903 5 | 13.38 | 100.80 | 12.24 |
Table 4 Performance comparison of different segmentation algorithm
应用类型 | 方法 | 分割精度 | 算法效率 | ||||
---|---|---|---|---|---|---|---|
mIoU | Dice | F1 Score | Params(M) | FLOPs(G) | FPS | ||
打码字符分割 | 大津双阈值法 | 0.058 3 | 0.101 5 | 0.113 8 | - | - | 48.01 |
自适应阈值分割+连通域去噪[ | 0.103 5 | 0.178 5 | 0.200 2 | - | - | 0.57 | |
高斯差分尺度空间+最大熵法[ | 0.066 3 | 0.107 3 | 0.120 9 | - | - | 2.12 | |
医学分割 | UNet[ | 0.779 9 | 0.873 3 | 0.886 2 | 17.27 | 751.54 | 4.70 |
UNet++[ | 0.756 4 | 0.850 0 | 0.861 9 | 9.16 | 653.20 | 5.19 | |
MSR[ | 0.781 0 | 0.876 2 | 0.888 0 | 17.27 | 751.54 | 2.33 | |
RA-UNet[ | 0.782 7 | 0.876 3 | 0.890 1 | 11.62 | 306.88 | 11.00 | |
改进型UNet[ | 0.798 9 | 0.885 3 | 0.899 7 | 34.87 | 1570.91 | 2.99 | |
RV-GAN[ | 0.799 8 | 0.884 1 | 0.898 3 | 14.34 | 289.29 | 11.12 | |
Res18-UNet (proposed) | 0.801 0 | 0.889 5 | 0.903 5 | 13.38 | 100.80 | 12.24 |
Fig. 9 Comparison with other segmentation algorithms ((a) Origin; (b) GT; (c) OTSU double threshold; (d) Adaptive threshold+denoising; (e) Gaussian difference scale space+maximum entropy; (f) UNet; (g) UNet++; (h) MSR+UNet; (i) RA-UNet; (j) Advanced UNet; (k) RV-GAN; (l) Ours)
模型输入尺寸 | mIoU | Dice | F1 Score | FPS |
---|---|---|---|---|
1280×960 | 0.799 3 | 0.886 0 | 0.900 4 | 5.67 |
640×480 | 0.801 5 | 0.872 0 | 0.891 2 | 21.38 |
Table 5 Test results on embedded platform (FP16)
模型输入尺寸 | mIoU | Dice | F1 Score | FPS |
---|---|---|---|---|
1280×960 | 0.799 3 | 0.886 0 | 0.900 4 | 5.67 |
640×480 | 0.801 5 | 0.872 0 | 0.891 2 | 21.38 |
[1] | 孙晓娜, 刘继超, 高国华. 基于视觉的乳品包装日期喷码缺陷检测技术[J]. 食品与机械, 2018, 34(10): 100-103, 108. |
SUN X N, LIU J C, GAO G H. Study on visual code-based defect detection technology for production date of dairy packaging[J]. Food & Machinery, 2018, 34(10): 100-103, 108. (in Chinese) | |
[2] |
马玲, 罗晓曙, 蒋品群. 基于模板匹配和支持向量机的点阵字符识别研究[J]. 计算机工程与应用, 2020, 56(4): 134-139.
DOI |
MA L, LUO X S, JIANG P Q. Research on dot matrix character recognition based on template matching and support vector machine[J]. Computer Engineering and Applications, 2020, 56(4): 134-139. (in Chinese)
DOI |
|
[3] | 林冬婷, 程洋, 欧阳, 等. 基于喷点融合特征的点阵字符分割方法[J]. 制造业自动化, 2021, 43(8): 52-57. |
LIN D T, CHENG Y, OU Y, et al. Detection method of dot matrix character based on spray fusion feature[J]. Manufacturing Automation, 2021, 43(8): 52-57. (in Chinese) | |
[4] | 张家财, 张良力, 曾飞. 钢坯表面点印字符图像自适应阈值分割方法[J]. 现代电子技术, 2021, 44(19): 49-54. |
ZHANG J C, ZHANG L L, ZENG F. Adaptive thresholding segmentation method for dot-printed character image on billet surface[J]. Modern Electronics Technique, 2021, 44(19): 49-54. (in Chinese) | |
[5] | 汤勃, 孔建益, 王兴东, 等. 钢板表面低对比度微小缺陷图像增强和分割[J]. 中国图象图形学报, 2020, 25(1): 81-91. |
TANG B, KONG J Y, WANG X D, et al. Image enhancement and segmentation algorithm for low-contrast small defects on steel plate[J]. Journal of Image and Graphics, 2020, 25(1): 81-91. (in Chinese) | |
[6] | BARTHAKUR M, SARMA K K. Complex image Segmentation using K-means clustering aided neuro-computing[C]// The 5th International Conference on Signal Processing and Integrated Networks. New York: IEEE Press, 2018: 327-331. |
[7] | 李镇锋, 陈晓荣, 陈梦华, 等. 基于图像熵和傅里叶变换的复杂背景分割[J]. 软件工程, 2021, 24(11): 19-23. |
LI Z F, CHEN X R, CHEN M H, et al. Complex background segmentation based on image entropy and Fourier transform[J]. Software Engineering, 2021, 24(11): 19-23. (in Chinese) | |
[8] | 王欣, 徐平平, 吴菲. 基于指数同态滤波耦合细节锐化规则的红外图像增强算法[J]. 电子测量与仪器学报, 2021, 35(10): 9-16. |
WANG X, XU P P, WU F. Infrared image enhancement algorithm based on exponential homomorphic filtering coupled with detail sharpening rule[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 9-16. (in Chinese) | |
[9] | SHEN L, YUE Z H, FENG F, et al. MSR-net: low-light image enhancement using deep convolutional network[EB/OL]. (2017-11-07) [2022-06-15]. https://arxiv.org/abs/1711.02488. |
[10] | QIN X B, FAN D P, HUANG C Y, et al. Boundary-aware segmentation network for mobile and web applications[EB/OL]. (2021-05-11) [2022-03-10]. https://arxiv.org/abs/2101.04704. |
[11] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[12] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. |
[13] | JÉGOU S, DROZDZAL M, VAZQUEZ D, et al. The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1175-1183. |
[14] | UPADHYAY K, AGRAWAL M, VASHIST P. U-net based multi-level texture suppression for vessel segmentation in low contrast regions[C]// The 28th European Signal Processing Conference. New York: IEEE Press, 2021: 1304-1308. |
[15] | 董月, 冯华君, 徐之海, 等. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报: 工学版, 2019, 53(2): 373-381, 406. |
DONG Y, FENG H J, XU Z H, et al. Attention Res-Unet: an efficient shadow detection algorithm[J]. Journal of Zhejiang University: Engineering Science, 2019, 53(2): 373-381, 406. (in Chinese) | |
[16] | KAMRAN S A, HOSSAIN K F, TAVAKKOLI A, et al. RV-GAN: segmenting retinal vascular structure in fundus photographs using a novel multi-scale generative adversarial network[M]//Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Cham: Springer International Publishing, 2021: 34-44. |
[17] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[18] | 蒋宏达, 叶西宁. 一种改进的I-Unet网络的皮肤病图像分割算法[J]. 现代电子技术, 2019, 42(12): 52-56. |
JIANG H D, YE X N. An improved skin disease image segmentation algorithm based on I-Unet network[J]. Modern Electronics Technique, 2019, 42(12): 52-56. (in Chinese) | |
[19] | 侯向丹, 赵一浩, 刘洪普, 等. 融合残差注意力机制的UNet视盘分割[J]. 中国图象图形学报, 2020, 25(9): 1915-1929. |
HOU X D, ZHAO Y H, LIU H P, et al. Optic disk segmentation by combining UNet and residual attention mechanism[J]. Journal of Image and Graphics, 2020, 25(9): 1915-1929. (in Chinese) | |
[20] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 618-626. |
[21] | ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing, 2018: 3-11. |
[22] | 钟文煜, 冯寿廷. 改进型Unet: 一种高效准确的视网膜血管分割方法[J]. 光学技术, 2019, 45(6): 744-748. |
ZHONG W Y, FENG S T. Improved Unet: an efficient and accurate retinal vessel segmentation method[J]. Optical Technique, 2019, 45(6): 744-748. (in Chinese) |
[1] | LIU Jing , HU Yong-li , LIU Xiu-ping , TAN Hong-chen , YIN Bao-cai. Multi-scale modality perception network for referring image segmentation [J]. Journal of Graphics, 2022, 43(6): 1150-1158. |
[2] | FANG Hong-bo, WAN Guang, CHEN Zhong-hui, HUANG Yi-wei, ZHANG Wen-yong, XIE Ben-liang. Offline handwriting mathematical symbol recognition based on improved YOLOv5s [J]. Journal of Graphics, 2022, 43(3): 387-395. |
[3] | ZHANG Yan , GAO Xin , LIU Yi , ZHANG Xiao-feng, ZHANG Cai-ming . Image segmentation algorithm based on improved pixel correlation model [J]. Journal of Graphics, 2022, 43(2): 205-213. |
[4] | LI Cui-yun, BAI Jing, ZHENG Liang. A U-Net based contour enhanced attention for medical image segmentation [J]. Journal of Graphics, 2022, 43(2): 273-278. |
[5] | CHEN Bao-yu, ZHANG Yi, YU Bing-bing, LIU Xiu-ping. Two-stage adjustable perceptual distillation network for virtual try-on [J]. Journal of Graphics, 2022, 43(2): 316-323. |
[6] | QIN Yu-xing, YI Xu-ming. Level set image segmentation method combining saliency and edge information [J]. Journal of Graphics, 2021, 42(5): 738-743. |
[7] | LI Xiao-hui, WANG Xi-li. CV image segmentation model combining with local and global features of the target [J]. Journal of Graphics, 2020, 41(6): 905-916. |
[8] | GU Yu-liang, YI Xu-ming . Adaptive weights image segmentation model based on wavelet transform [J]. Journal of Graphics, 2020, 41(5): 733-739. |
[9] | LI Zhi, XU Dan . Batik dyeing simulation based on convolutional neural network [J]. Journal of Graphics, 2020, 41(2): 196-203. |
[10] | DUAN Jie1,2, CUI Zhi-ming1,2, SHEN Yi1,2, FENG Wei1, WU Hong-jie1, FENG Yu-qing1,2. A CT image segmentation method for liver tumor by an improved FCN [J]. Journal of Graphics, 2020, 41(1): 100-107. |
[11] | WEI Chen-chen, YI Xu-ming . An Improved Method for Image Segmentation Based on DRLSE Level Set [J]. Journal of Graphics, 2019, 40(5): 885-891. |
[12] | WANG You-sheng, WANG Yu-ting, XIA Zhang-tao, YE Hong-mei . Automatic Segmentation Algorithm of Lumen in Sequence IVUS Images [J]. Journal of Graphics, 2019, 40(1): 173-180. |
[13] | LIU Jianxin1, ZENG Qiang1, XU Ke2, WANG Yawei1 . Research on the Method of Tobacco Leaf Disease Spot Segmentation Based on Morphology and Wavelet Transform [J]. Journal of Graphics, 2018, 39(5): 933-938. |
[14] | JI Ke, Yi Xuming. Hybrid Level Set Image Segmentation Model Based on Variable Weights [J]. Journal of Graphics, 2017, 38(6): 831-836. |
[15] | MA Yinghui1,2, WU Yiquan2,3,4. Segmentation of Industrial CT Image Based on Improved Exponential Cross Entropy and Glow-Worm Swarm Optimization [J]. Journal of Graphics, 2017, 38(1): 57-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||