Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 502-512.DOI: 10.11996/JG.j.2095-302X.2023030502
Previous Articles Next Articles
SUN Long-fei1,2(), LIU Hui1,2(
), YANG Feng-chang3, LI Pan4
Received:
2022-10-07
Accepted:
2022-12-17
Online:
2023-06-30
Published:
2023-06-30
Contact:
LIU Hui (1978-), professor, Ph.D. Her main research interest covers data mining and visualization. E-mail:liuh_lh@sdufe.edu.cn
About author:
SUN Long-fei (1996-), master student. His main research interest covers medical image processing. E-mail:slongfei2021@163.com
Supported by:
CLC Number:
SUN Long-fei, LIU Hui, YANG Feng-chang, LI Pan. Research on cyclic generative network oriented to inter-layer interpolation of medical images[J]. Journal of Graphics, 2023, 44(3): 502-512.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030502
Fig. 2 Framework of the image transformation module ((a) Cyclic network structure; (b) Mapping process of binary image; (c) Inverse mapping process of medical image)
数据 来源 | 数据 分类 | 数据 类别 | 图像 分辨率 | 层间距 (mm) |
---|---|---|---|---|
自建 数据集 | 心脏 | CT | 512×512 | 2.5 |
脑部 | MRI | 181×217 | 2.5 | |
肺部 | CT | 812×662 | 5.0 | |
公共 数据集 | D-Lung | CT | 648×486 | 5.0 |
K-Lung | CT | 512×512 | 1.0 |
Table 1 Information of experimental datasets
数据 来源 | 数据 分类 | 数据 类别 | 图像 分辨率 | 层间距 (mm) |
---|---|---|---|---|
自建 数据集 | 心脏 | CT | 512×512 | 2.5 |
脑部 | MRI | 181×217 | 2.5 | |
肺部 | CT | 812×662 | 5.0 | |
公共 数据集 | D-Lung | CT | 648×486 | 5.0 |
K-Lung | CT | 512×512 | 1.0 |
α | PSNR (dB) | SSIM |
---|---|---|
7 | 30.863 1 | 0.917 9 |
8 | 32.584 7 | 0.930 2 |
9 | 33.225 5 | 0.934 4 |
10 | 33.540 8 | 0.936 6 |
11 | 33.382 0 | 0.934 1 |
12 | 32.439 4 | 0.929 5 |
Table 2 Quantitative results under different values of α
α | PSNR (dB) | SSIM |
---|---|---|
7 | 30.863 1 | 0.917 9 |
8 | 32.584 7 | 0.930 2 |
9 | 33.225 5 | 0.934 4 |
10 | 33.540 8 | 0.936 6 |
11 | 33.382 0 | 0.934 1 |
12 | 32.439 4 | 0.929 5 |
β | PSNR (dB) | SSIM |
---|---|---|
2 | 31.201 9 | 0.919 2 |
3 | 32.673 7 | 0.929 4 |
4 | 33.280 0 | 0.935 7 |
5 | 33.540 8 | 0.936 6 |
6 | 33.349 7 | 0.934 2 |
7 | 32.711 3 | 0.930 8 |
Table 3 Quantitative results under different values of β
β | PSNR (dB) | SSIM |
---|---|---|
2 | 31.201 9 | 0.919 2 |
3 | 32.673 7 | 0.929 4 |
4 | 33.280 0 | 0.935 7 |
5 | 33.540 8 | 0.936 6 |
6 | 33.349 7 | 0.934 2 |
7 | 32.711 3 | 0.930 8 |
损失函数 | PSNR (dB) | SSIM |
---|---|---|
L1 | 32.565 1 | 0.929 6 |
L2 | 30.813 6 | 0.917 8 |
Lc | 32.483 7 | 0.929 8 |
L1_f | 33.082 0 | 0.933 4 |
L2_f | 32.940 1 | 0.931 5 |
Lrobust | 33.540 8 | 0.936 6 |
Table 4 Interpolation results based on different loss functions
损失函数 | PSNR (dB) | SSIM |
---|---|---|
L1 | 32.565 1 | 0.929 6 |
L2 | 30.813 6 | 0.917 8 |
Lc | 32.483 7 | 0.929 8 |
L1_f | 33.082 0 | 0.933 4 |
L2_f | 32.940 1 | 0.931 5 |
Lrobust | 33.540 8 | 0.936 6 |
数据集 | 插值模块 | 循环生成网络 |
---|---|---|
心脏 | 31.684 7/0.918 2 | 32.902 3/0.928 6 |
脑部 | 32.322 9/0.942 0 | 33.711 0/0.959 7 |
肺部 | 31.704 9/0.915 3 | 32.679 6/0.928 2 |
D-Lung | 31.676 5/0.914 1 | 32.584 7/0.920 4 |
K-Lung | 31.691 0/0.917 2 | 32.774 5/0.936 4 |
Table 5 Interpolation results of the interpolation module and the cyclic generative network (PSNR/SSIM)
数据集 | 插值模块 | 循环生成网络 |
---|---|---|
心脏 | 31.684 7/0.918 2 | 32.902 3/0.928 6 |
脑部 | 32.322 9/0.942 0 | 33.711 0/0.959 7 |
肺部 | 31.704 9/0.915 3 | 32.679 6/0.928 2 |
D-Lung | 31.676 5/0.914 1 | 32.584 7/0.920 4 |
K-Lung | 31.691 0/0.917 2 | 32.774 5/0.936 4 |
Fig. 7 Interpolation results comparison of the interpolation module and the cyclic generative network ((a) Ground-truth; (b) The interpolation module; (c) The cyclic generative network)
Fig. 8 Interpolation results comparison based on CycleGAN and the image transformation module ((a) Ground-truth; (b) CycleGAN; (c) The image transformation module)
Fig. 9 Comparison of the interpolation performance of different interpolation methods on the K-Lung dataset with 1 mm layer spacing ((a) Ground-truth; (b) Pix2pix; (c) CyclicGen; (d) CAIN; (e) VFIT; (f) Proposed)
Fig. 10 Comparison of the interpolation performance of different interpolation methods on the private head dataset with 2.5 mm layer spacing ((a) Ground-truth; (b) Pix2pix; (c) CyclicGen; (d) CAIN; (e) VFIT; (f) Proposed)
Fig. 11 Comparison of the interpolation performance of different interpolation methods on the private heart dataset with 5 mm layer spacing ((a) Ground-truth; (b) Pix2pix; (c) CyclicGen; (d) CAIN; (e) VFIT; (f) Proposed)
算法网络 | PSNR/SSIM | ||||||
---|---|---|---|---|---|---|---|
心脏 | 脑部 | 肺部 | D-Lung | K-Lung | 平均 | 参数量(M) | |
SepConv_L1 | 31.084 7 0.914 7 | 31.910 8 0.940 1 | 31.201 3 0.910 8 | 31.146 1 0.907 2 | 31.128 1 0.911 5 | 31.294 2 0.916 9 | 21.6 |
SepConv_Lf | 30.339 0 0.910 2 | 31.707 6 0.938 8 | 30.504 7 0.904 9 | 30.526 5 0.904 6 | 30.463 7 0.905 8 | 30.708 3 0.912 9 | 21.6 |
pix2pix | 31.854 6 0.9207 | 32.627 7 0.952 1 | 32.047 6 0.917 5 | 32.084 7 0.916 8 | 32.010 5 0.920 0 | 32.125 0 0.925 4 | 44.6 |
CyclicGen | 32.161 3 0.923 9 | 32.794 8 0.954 3 | 32.276 6 0.920 4 | 32.181 0 0.918 1 | 32.372 2 0.929 2 | 32.357 2 0.929 2 | 19.8 |
CAIN | 32.550 5 0.925 5 | 33.260 4 0.956 8 | 32.404 8 0.923 9 | 32.480 2 0.919 4 | 32.580 9 0.934 8 | 32.655 4 0.932 1 | 42.8 |
VFIT | 32.874 3 0.928 3 | 33.680 2 0.959 9 | 32.610 4 0.927 7 | 32.522 6 0.920 3 | 32.820 7 0.936 6 | 32.901 6 0.934 6 | 29.0 |
Proposed | 32.902 3 0.928 6 | 33.711 0 0.959 7 | 32.679 6 0.928 2 | 32.584 7 0.920 4 | 32.774 5 0.936 4 | 32.930 4 0.934 7 | 30.9 |
Table 6 Quantitative comparison results of different interpolation methods on fixed datasets
算法网络 | PSNR/SSIM | ||||||
---|---|---|---|---|---|---|---|
心脏 | 脑部 | 肺部 | D-Lung | K-Lung | 平均 | 参数量(M) | |
SepConv_L1 | 31.084 7 0.914 7 | 31.910 8 0.940 1 | 31.201 3 0.910 8 | 31.146 1 0.907 2 | 31.128 1 0.911 5 | 31.294 2 0.916 9 | 21.6 |
SepConv_Lf | 30.339 0 0.910 2 | 31.707 6 0.938 8 | 30.504 7 0.904 9 | 30.526 5 0.904 6 | 30.463 7 0.905 8 | 30.708 3 0.912 9 | 21.6 |
pix2pix | 31.854 6 0.9207 | 32.627 7 0.952 1 | 32.047 6 0.917 5 | 32.084 7 0.916 8 | 32.010 5 0.920 0 | 32.125 0 0.925 4 | 44.6 |
CyclicGen | 32.161 3 0.923 9 | 32.794 8 0.954 3 | 32.276 6 0.920 4 | 32.181 0 0.918 1 | 32.372 2 0.929 2 | 32.357 2 0.929 2 | 19.8 |
CAIN | 32.550 5 0.925 5 | 33.260 4 0.956 8 | 32.404 8 0.923 9 | 32.480 2 0.919 4 | 32.580 9 0.934 8 | 32.655 4 0.932 1 | 42.8 |
VFIT | 32.874 3 0.928 3 | 33.680 2 0.959 9 | 32.610 4 0.927 7 | 32.522 6 0.920 3 | 32.820 7 0.936 6 | 32.901 6 0.934 6 | 29.0 |
Proposed | 32.902 3 0.928 6 | 33.711 0 0.959 7 | 32.679 6 0.928 2 | 32.584 7 0.920 4 | 32.774 5 0.936 4 | 32.930 4 0.934 7 | 30.9 |
[1] | SIM H, OH J, KIM M. XVFI: eXtreme video frame interpolation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 14469-14478. |
[2] | 林毓秀, 刘慧, 刘绍玲, 等. 三维CT层间图像超分辨重建与修复[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 919-929. |
LIN Y X, LIU H, LIU S L, et al. Super-resolution reconstruction and inpainting of inter-layer image in 3D CT[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 919-929. (in Chinese) | |
[3] | MEYER S, WANG O, ZIMMER H, et al. Phase-based frame interpolation for video[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1410-1418. |
[4] | EHRHARDT J, SäRING D, HANDELS H. Optical flow based interpolation of temporal image sequences[C]// Medical Imaging 2006:Image Processing. Bellingham: SPIE Press. 2006: 830-837. |
[5] |
ZHANG W W, BRADY J M, BECHER H, et al. Spatio-temporal (2D+T) non-rigid registration of real-time 3D echocardiography and cardiovascular MR image sequences[J]. Physics in Medicine and Biology, 2011, 56(5): 1341-1360.
DOI PMID |
[6] | NIKLAUS S, MAI L, LIU F. Video frame interpolation via adaptive convolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2270-2279. |
[7] | NIKLAUS S, MAI L, LIU F. Video frame interpolation via adaptive separable convolution[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 261-270. |
[8] | ZHANG L, KARANI N, TANNER C, et al. Temporal interpolation via motion field prediction[EB/OL]. [2022-06-03]. https://arxiv.org/abs/1804.04440. |
[9] | KARANI N, TANNER C, KOZERKE S, et al. Temporal interpolation of abdominal MRIs acquired during free-breathing[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International publishing, 2017: 359-367. |
[10] |
LIU Y L, LIAO Y T, LIN Y Y, et al. Deep video frame interpolation using cyclic frame generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8794-8802.
DOI URL |
[11] |
CHOI M, KIM H, HAN B, et al. Channel attention is all You need for video frame interpolation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10663-10671.
DOI URL |
[12] | SHI Z H, XU X Y, LIU X H, et al. Video frame interpolation transformer[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 17461-17470. |
[13] |
YU H, YANG L T, ZHANG Q C, et al. Convolutional neural networks for medical image analysis: state-of-the-art, comparisons, improvement and perspectives[J]. Neurocomputing, 2021, 444: 92-110.
DOI URL |
[14] | 李翠云, 白静, 郑凉. 融合边缘增强注意力机制和U-Net网络的医学图像分割[J]. 图学学报, 2022, 43(2): 273-278. |
LI C Y, BAI J, ZHENG L. A U-Net based contour enhanced attention for medical image segmentation[J]. Journal of Graphics, 2022, 43(2): 273-278. (in Chinese) | |
[15] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// The 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
[16] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2242-2251. |
[17] | ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5967-5976. |
[18] | 廖仕敏, 刘仰川, 朱叶晨, 等. 一种基于CycleGAN改进的低剂量CT图像增强网络[J]. 图学学报, 2022, 43(4): 570-579. |
LIAO S M, LIU Y C, ZHU Y C, et al. An improved low-dose CT image enhancement network based on CycleGAN[J]. Journal of Graphics, 2022, 43(4): 570-579. (in Chinese) | |
[19] | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// European Conference on Computer Vision. Cham: Springer International publishing, 2016: 694-711. |
[20] | TAIGMAN Y, POLYAK A, WOLF L. Unsupervised cross-domain image generation[EB/OL]. [2022-06-26]. https://arxiv.org/abs/1611.02200. |
[21] | BARRON J T. A more general robust loss function[EB/OL]. [2022-07-02]. https://arxiv.org/pdf/1701.03077v2.pdf. |
[22] | MATHIEU M, COUPRIE C, LECUN Y. Deep multi-scale video prediction beyond mean square error[EB/OL]. [2022-07-22]. https://arxiv.org/pdf/1511.05440.pdf. |
[23] |
GU J Q, LI Z J, WANG Y Y, et al. Deep generative adversarial networks for thin-section infant MR image reconstruction[J]. IEEE Access, 2019, 7: 68290-68304.
DOI URL |
[24] | 白亮, 刘辉, 尚振宏. 自适应融合层级特征的混合退化图像复原算法[J]. 计算机辅助设计与图形学学报, 2021, 33(2): 215-222. |
BAI L, LIU H, SHANG Z H. Mixed degraded image restoration algorithm based on adaptive fusion of hierarchical features[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(2): 215-222. (in Chinese) | |
[25] |
CASTILLO R, CASTILLO E, GUERRA R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets[J]. Physics in Medicine and Biology, 2009, 54(7): 1849-1870.
DOI PMID |
[26] | YAN K, WANG X S, LU L, et al. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning[J]. Journal of Medical Imaging, 2018, 5(3): 036501. |
[27] | MAO X D, LI Q, XIE H R, et al. Least Squares generative adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2813-2821. |
[28] | ODENA A, DUMOULIN V, OLAH C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 1(10): e3. |
[29] |
LI X S, ZHOU F Q, TAN H S, et al. Multimodal medical image fusion based on joint bilateral filter and local gradient energy[J]. Information Sciences, 2021, 569: 302-325.
DOI URL |
[1] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
[2] | XIONG Ju-ju , XU Yang, FAN Run-ze , SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. |
[3] | HUANG Zhi-yong, HAN Sha-sha, CHEN Zhi-jun, YAO Yu, XIONG Biao, MA Kai. An imitation U-shaped network for video object segmentation [J]. Journal of Graphics, 2023, 44(1): 104-111. |
[4] | GUO Wen , LI Dong , YUAN Fei. 1. School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai Shandong 264005, China; 2. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100195, China [J]. Journal of Graphics, 2022, 43(6): 1124-1133. |
[5] | ZHAO Lu-lu , WANG Xue-ying , ZHANG Yi , ZHANG Mei-yue. Vehicle target detection based on YOLOv5s fusion SENet [J]. Journal of Graphics, 2022, 43(5): 776-782. |
[6] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. |
[7] | LI Ni-ni, WANG Xia-li, FU Yang-yang, ZHENG Feng-xian, HE Dan-dan, YUAN Shao-xin. A traffic police object detection method based on optimized YOLO model [J]. Journal of Graphics, 2022, 43(2): 296-305. |
[8] | XU Chen, NI Rong-rong, ZHAO Yao, . 3D object detection algorithm combined with sparse point cloud completion [J]. Journal of Graphics, 2021, 42(1): 37-43. |
[9] | Liu Yan. Improved Diamond Motion Estimation Algorithm Based on Search Prediction and Threshold Decision [J]. Journal of Graphics, 2015, 36(4): 576-580. |
[10] | Liu Yan. Improvement of Motion Estimation Algorithm and Experiment Based on DS-CDS [J]. Journal of Graphics, 2015, 36(3): 457-561. |
[11] | Zhang Qinglei, Qian Guangpu. Parametric Modeling System for Stator Windings of Turbo Generator [J]. Journal of Graphics, 2014, 35(4): 541-547. |
[12] | Wang Hengliang, Lu Zhenggang, Sun Xiaojie, Zhang Baoan. The Structural Design of Shaft-end Generator in Railway Wagons Based on Virtual Prototype Technology [J]. Journal of Graphics, 2013, 34(4): 105-111. |
[13] | Liu Jianguo, Zhao Linming, Wang Liying. Research and development of hydro-generator units virtual installation based on X3D [J]. Journal of Graphics, 2012, 33(5): 78-82. |
[14] | CHEN Hao, HUO Xing. Stability Improvement of Face Recognition Algorithm in Video Monitor [J]. Journal of Graphics, 2011, 32(6): 53-56. |
[15] | CAI Tao, DUAN Shan-xu, LI De-hua. High Accuracy Motion Estimation Method Used for Three Dimensional Reconstructing from Two Views [J]. Journal of Graphics, 2010, 31(6): 23-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||