Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 755-763.DOI: 10.11996/JG.j.2095-302X.2023040755
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
LIU Yan(), XIONG You-yi, HAN Miao-miao, YANG Long(
)
Received:
2022-12-05
Accepted:
2023-03-01
Online:
2023-08-31
Published:
2023-08-16
Contact:
YANG Long (1982-), associate professor, Ph.D. His main research interest covers computer graphics. E-mail:About author:
LIU Yan (1997-), master student. Her main research interest covers computer graphics. E-mail:yanl@nwafu.edu.cn
Supported by:
CLC Number:
LIU Yan, XIONG You-yi, HAN Miao-miao, YANG Long. Geometric feature guided multi-level segmentation for object point clouds[J]. Journal of Graphics, 2023, 44(4): 755-763.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040755
分割程度 | 室内场景 | 室内物体(部件) | |
---|---|---|---|
扫描模型 | CAD模型 | 扫描模型 | |
语义级分割 | √ | √ | √ |
实例级分割 | √ | √ | × |
Table 1 Research status of point cloud segmentation
分割程度 | 室内场景 | 室内物体(部件) | |
---|---|---|---|
扫描模型 | CAD模型 | 扫描模型 | |
语义级分割 | √ | √ | √ |
实例级分割 | √ | √ | × |
Fig. 4 The segment results of chair model and toilet model by our method ((a), (e) Original model; (b), (f) The initial segmentation result; (c), (g) The local concave segmentation result; (d), (h) The concave-convex collaborative segmentation result)
Fig. 5 Indoor scanning object point cloud part segmentation results of different methods ((a) LCCP[27]; (b) CPC[28]; (c) PointNet++[35]; (d) Ours; (e) Ground truth) (Random colors for each segment)
Fig. 6 The OBB of every segment of different methods for indoor scanning object point cloud part segmentation ((a) LCCP[27]; (b) CPC[28]; (c) PointNet++[35]; (d) Ours; (e) OBB of ground truth; (f) Model of ground truth)
方法 | Average | Chair1 | Chair2 | Chair3 | Chair4 | Chair5 | Sofa1 | Sofa2 | Sofa3 | Sofa4 | Sofa5 | Toilet1 | Toilet2 | Table |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCCP[ | 0.509 | 0.650 | 0.663 | 0.713 | 0.638 | 0.630 | 0.495 | 0.509 | 0.392 | 0.376 | 0.447 | 0.296 | 0.370 | 0.443 |
CPC[ | 0.398 | 0.456 | 0.521 | 0.331 | 0.558 | 0.561 | 0.888 | 0.149 | 0.377 | 0.358 | 0.244 | 0.434 | 0.082 | 0.212 |
PointNet++[ | 0.531 | 0.260 | 0.381 | 0.874 | 0.561 | 1.000 | 0.795 | 0.437 | 0.360 | 0.407 | 0.645 | 0.014 | 0.542 | 0.626 |
Ours | 0.590 | 0.559 | 0.707 | 0.604 | 0.639 | 0.782 | 0.701 | 0.600 | 0.561 | 0.447 | 0.805 | 0.443 | 0.413 | 0.412 |
Table 2 Quantitative comparison (recall@boundary indicator) of four methods for part segmentation on different scanning object point clouds
方法 | Average | Chair1 | Chair2 | Chair3 | Chair4 | Chair5 | Sofa1 | Sofa2 | Sofa3 | Sofa4 | Sofa5 | Toilet1 | Toilet2 | Table |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCCP[ | 0.509 | 0.650 | 0.663 | 0.713 | 0.638 | 0.630 | 0.495 | 0.509 | 0.392 | 0.376 | 0.447 | 0.296 | 0.370 | 0.443 |
CPC[ | 0.398 | 0.456 | 0.521 | 0.331 | 0.558 | 0.561 | 0.888 | 0.149 | 0.377 | 0.358 | 0.244 | 0.434 | 0.082 | 0.212 |
PointNet++[ | 0.531 | 0.260 | 0.381 | 0.874 | 0.561 | 1.000 | 0.795 | 0.437 | 0.360 | 0.407 | 0.645 | 0.014 | 0.542 | 0.626 |
Ours | 0.590 | 0.559 | 0.707 | 0.604 | 0.639 | 0.782 | 0.701 | 0.600 | 0.561 | 0.447 | 0.805 | 0.443 | 0.413 | 0.412 |
[1] | HU R Z, VAN KAICK O, WU B J, et al. Learning how objects function via co-analysis of interactions[J]. ACM Transactions on Graphics, 2016, 35(4): 1-13. |
[2] | HU R Z, YAN Z H, ZHANG J W, et al. Predictive and generative neural networks for object functionality[EB/OL]. [2022-06-28]. https://arxiv.org/abs/2006.15520. |
[3] | KIM V G, CHAUDHURI S, GUIBAS L, et al. Shape2Pose: human-centric shape analysis[J]. ACM Transactions on Graphics, 2014, 33(4): 1-12. |
[4] |
JAIN A, THORMÄHLEN T, RITSCHEL T, et al. Exploring shape variations by 3D-model decomposition and part-based recombination[J]. Computer Graphics Forum, 2012, 31(2pt3): 631-640.
DOI URL |
[5] | OVSJANIKOV M, LI W, GUIBAS L, et al. Exploration of continuous variability in collections of 3D shapes[J]. ACM Transactions on Graphics, 2011, 30(4): 1-10. |
[6] | MO K C, ZHU S L, CHANG A X, et al. PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 909-918. |
[7] | ZHOU Q Y, PARK J, KOLTUN V. Open3D: a modern library for 3D data processing[EB/OL]. [2022-01-30]. https://arxiv.org/abs/1801.09847. |
[8] | DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2432-2443. |
[9] |
YANG L, YAN Q A, FU Y P, et al. Surface reconstruction via fusing sparse-sequence of depth images[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(2): 1190-1203.
DOI URL |
[10] |
LIAO Y B, ZHU H Y, ZHANG Y G, et al. Point cloud instance segmentation with semi-supervised bounding-box mining[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10159-10170.
DOI URL |
[11] | HUANG Q G, WANG W Y, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 2626-2635. |
[12] | YE X Q, LI J M, HUANG H X, et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 415-430. |
[13] | CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: an information-rich 3D model repository[EB/OL]. [2022-06-28]. https://arxiv.org/abs/1512.03012. |
[14] | WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1912-1920. |
[15] | XU M T, DING R Y, ZHAO H S, et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 3172-3181. |
[16] | XU Y F, FAN T Q, XU M Y, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 90-105. |
[17] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. |
[18] | ZHANG K E, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1904.10014. |
[19] | YU F G, LIU K, ZHANG Y, et al. PartNet: a recursive part decomposition network for fine-grained and hierarchical shape segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9483-9492. |
[20] | UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1588-1597. |
[21] | RUSU R B, COUSINS S. 3D is here: point cloud library (PCL)[C]// 2011 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2011: 1-4. |
[22] | BHANU B, LEE S, HO C C, et al. Range data processing: representation of surfaces by edges[EB/OL]. [2022-06-28]. https://collections.lib.utah.edu/details?id=706994. |
[23] |
BESL P J, JAIN R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(2): 167-192.
DOI URL |
[24] |
CHEN J, CHEN B Q. Architectural modeling from sparsely scanned range data[J]. International Journal of Computer Vision, 2008, 78(2): 223-236.
DOI URL |
[25] | 李仁忠, 刘阳阳, 杨曼, 等. 基于改进的区域生长三维点云分割[J]. 激光与光电子学进展, 2018, 55(5): 325-331. |
LI R Z, LIU Y Y, YANG M, et al. Three-dimensional point cloud segmentation algorithm based on improved region growing[J]. Laser & Optoelectronics Progress, 2018, 55(5): 325-331 (in Chinese). | |
[26] | 汪文琪, 李宗春, 付永健, 等. 基于改进多规则区域生长的点云多要素分割[J]. 光学学报, 2021, 41(5): 198-212. |
WANG W Q, LI Z C, FU Y J, et al. Multi-factor segmentation of point cloud based on improved multi-rule region growing[J]. Acta Optica Sinica, 2021, 41(5): 198-212 (in Chinese). | |
[27] | STEIN S C, SCHOELER M, PAPON J, et al. Object partitioning using local convexity[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 304-311. |
[28] | SCHOELER M, PAPON J, WÖRGÖTTER F. Constrained planar cuts - Object partitioning for point clouds[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 5207-5215. |
[29] | BORRMANN D, ELSEBERG J, LINGEMANN K, et al. The 3D Hough Transform for plane detection in point clouds: a review and a new accumulator design[J]. 3D Research, 2011, 2(2): 3. |
[30] |
FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
DOI URL |
[31] |
HULIK R, SPANEL M, SMRZ P, et al. Continuous plane detection in point-cloud data based on 3D Hough Transform[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 86-97.
DOI URL |
[32] |
SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2): 214-226.
DOI URL |
[33] | 田朋举, 花向红, 康停军, 等. 一种基于点云数据的建筑物平面精细分割方法[J]. 测绘科学, 2021, 46(2): 122-129. |
TIAN P J, HUA X H, KANG T J, et al. Fine segmentation of building planar feature from large scale unorganized point cloud[J]. Science of Surveying and Mapping, 2021, 46(2): 122-129 (in Chinese). | |
[34] | CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[35] | QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[C]// The 24th Annual Conference on Neural Information Processing System. Cambridge: MIT Press, 2017: 5205-5114. |
[36] |
LIU T, YANG Z H, HU S J, et al. Neighbor reweighted local centroid for geometric feature identification[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 29(2): 1545-1558.
DOI URL |
[37] | NGUYEN K W L, APRILIA A, KHAIRYANTO A, et al. Edge detection from point cloud of worn parts[EB/OL]. [2022-06-28]. https://dr.ntu.edu.sg/handle/10356/88666. |
[38] |
GUENNEBAUD G, GROSS M. Algebraic point set surfaces[J]. ACM Transactions on Graphics, 2007, 26(3): 23-es.
DOI URL |
[39] | SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 770-779. |
[40] |
ZHAO L, TAO W B. JSNet: joint instance and semantic segmentation of 3D point clouds[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12951-12958.
DOI URL |
[41] | 吴军, 崔玥, 赵雪梅, 等. SSA-PointNet++: 空间自注意力机制下的3D点云语义分割网络[J]. 计算机辅助设计与图形学学报, 2022, 34(3): 437-448. |
WU J, CUI Y, ZHAO X M, et al. SSA- PointNet ++: a space self-attention CNN for the semantic segmentation of 3D point cloud[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(3): 437-448 (in Chinese). |
[1] | WANG Chun-xiang, LIU Liu, ZHOU Guo-yong, JI Kang-hui . Cylindrical feature hole recognition for automatic repair [J]. Journal of Graphics, 2021, 42(3): 511-516. |
[2] | SHI Shuang, QU Shi-ru, HE Li. A New Algorothm for Boundary Tracing [J]. Journal of Graphics, 2011, 32(3): 52-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||