Journal of Graphics ›› 2023, Vol. 44 ›› Issue (5): 947-954.DOI: 10.11996/JG.j.2095-302X.2023050947
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHANG Yun-peng1(), ZHOU Pu-cheng1,2(
), XUE Mo-gen1,2
Received:
2023-03-09
Accepted:
2023-05-26
Online:
2023-10-31
Published:
2023-10-31
Contact:
ZHOU Pu-cheng (1977-), professor, Ph.D. His main research interests cover graphic image processing, computer vision, etc. E-mail:About author:
ZHANG Yun-peng (1993-), master student. His main research interest covers digital image processing. E-mail:1791973191@qq.com
Supported by:
CLC Number:
ZHANG Yun-peng, ZHOU Pu-cheng, XUE Mo-gen. Snow removal in video based on low-rank tensor decomposition and non-subsampled shearlet transform[J]. Journal of Graphics, 2023, 44(5): 947-954.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023050947
Fig. 2 Comparison of snow removal results of synthetic snow videos ((a) Video with synthetic snow.; (b) MAWRNe; (c) HDCWNet; (d) JSTASR; (e) DesnowNet; (f) AirNet; (g) LRMC; (h) MSCSC; (i) OTMSCSC; (j) Ours)
算法 | PSNR(dB) | SSIM | FSIM | RMSE |
---|---|---|---|---|
合成雪天视频图像 | 33.467 0 | 0.969 3 | 0.952 8 | 5.409 9 |
MAWRNet | 35.741 8 | 0.976 7 | 0.981 0 | 4.163 4 |
HDCWNet | 20.891 7 | 0.897 4 | 0.939 4 | 23.012 0 |
JSTASR | 23.919 2 | 0.872 7 | 0.930 3 | 16.239 7 |
DesnowNet | 30.998 0 | 0.963 7 | 0.955 6 | 7.188 5 |
AirNet | 32.644 7 | 0.968 7 | 0.954 7 | 5.974 1 |
LRMC | 37.412 1 | 0.976 4 | 0.992 1 | 3.435 1 |
MSCSC | 36.367 6 | 0.973 9 | 0.988 3 | 3.874 0 |
OTMSCSC | 35.857 6 | 0.976 8 | 0.989 9 | 4.108 7 |
本文算法 | 38.098 8 | 0.979 6 | 0.995 6 | 3.173 9 |
Table 1 Evaluation results of different snow removal methods
算法 | PSNR(dB) | SSIM | FSIM | RMSE |
---|---|---|---|---|
合成雪天视频图像 | 33.467 0 | 0.969 3 | 0.952 8 | 5.409 9 |
MAWRNet | 35.741 8 | 0.976 7 | 0.981 0 | 4.163 4 |
HDCWNet | 20.891 7 | 0.897 4 | 0.939 4 | 23.012 0 |
JSTASR | 23.919 2 | 0.872 7 | 0.930 3 | 16.239 7 |
DesnowNet | 30.998 0 | 0.963 7 | 0.955 6 | 7.188 5 |
AirNet | 32.644 7 | 0.968 7 | 0.954 7 | 5.974 1 |
LRMC | 37.412 1 | 0.976 4 | 0.992 1 | 3.435 1 |
MSCSC | 36.367 6 | 0.973 9 | 0.988 3 | 3.874 0 |
OTMSCSC | 35.857 6 | 0.976 8 | 0.989 9 | 4.108 7 |
本文算法 | 38.098 8 | 0.979 6 | 0.995 6 | 3.173 9 |
Fig. 3 Comparison of snow removal effect for stationary background scene ((a) Video with real snow; (b) MAWRNet; (c) HDCWNet; (d) JSTASR; (e) DesnowNet; (f) AirNet; (g) LRMC; (h) MSCSC; (i) OTMSCSC; (j) Ours)
Fig. 4 Comparison of snow removal effect for dynamic background scene ((a) Video with real snow; (b) MAWRNet; (c) HDCWNet; (d) JSTASR; (e) DesnowNet; (f) AirNet; (g) LRMC; (h) MSCSC; (i) OTMSCSC; (j) Ours)
Fig. 5 Comparison of snow removal effect for moving object scene ((a) Video with real snow; (b) MAWRNet; (c) HDCWNet; (d) JSTASR; (e) DesnowNet; (f) AirNet; (g) LRMC; (h) MSCSC; (i) OTMSCSC; (j) Ours)
算法 | |||||||||
---|---|---|---|---|---|---|---|---|---|
PIQE↓ | NIQE↓ | BRISQUE↓ | PIQE↓ | NIQE↓ | BRISQUE↓ | PIQE↓ | NIQE↓ | BRISQUE↓ | |
原始图像 | 57.096 9 | 3.093 0 | 30.038 8 | 42.008 5 | 6.336 4 | 27.307 5 | 46.722 9 | 4.362 3 | 26.678 2 |
MAWRNet | 51.574 4 | 3.151 4 | 30.131 8 | 33.379 0 | 4.028 9 | 12.518 5 | 24.237 5 | 2.982 5 | 11.384 1 |
HDCWNet | 55.649 1 | 3.764 4 | 26.802 2 | 29.474 1 | 5.787 3 | 22.922 0 | 40.312 8 | 4.639 1 | 19.357 9 |
JSTASR | 55.404 1 | 3.482 6 | 28.166 8 | 28.838 8 | 6.059 0 | 13.251 2 | 39.977 3 | 4.500 5 | 22.012 9 |
DesnowNet | 58.487 0 | 3.265 2 | 22.623 1 | 39.875 0 | 3.988 3 | 13.655 9 | 42.540 9 | 4.501 7 | 9.358 0 |
AirNet | 54.280 1 | 3.113 9 | 24.102 5 | 37.785 9 | 3.849 8 | 18.953 8 | 35.771 3 | 4.244 9 | 8.865 1 |
LRMC | 58.719 4 | 3.708 1 | 23.952 0 | 38.958 1 | 3.142 8 | 26.065 9 | 36.664 0 | 4.312 6 | 8.066 7 |
MSCSC | 56.851 6 | 3.124 7 | 29.685 1 | 42.400 0 | 2.981 6 | 26.015 1 | 37.463 9 | 4.040 3 | 10.555 4 |
OTMSCSC | 56.508 2 | 3.103 4 | 29.086 4 | 38.994 3 | 4.140 9 | 26.905 0 | 39.287 0 | 4.407 5 | 19.684 8 |
本文算法 | 51.884 1 | 3.026 2 | 22.331 5 | 27.586 8 | 2.811 7 | 12.500 7 | 22.249 6 | 2.955 8 | 8.572 2 |
Table 2 Comparison of evaluation index for different snow removal algorithms
算法 | |||||||||
---|---|---|---|---|---|---|---|---|---|
PIQE↓ | NIQE↓ | BRISQUE↓ | PIQE↓ | NIQE↓ | BRISQUE↓ | PIQE↓ | NIQE↓ | BRISQUE↓ | |
原始图像 | 57.096 9 | 3.093 0 | 30.038 8 | 42.008 5 | 6.336 4 | 27.307 5 | 46.722 9 | 4.362 3 | 26.678 2 |
MAWRNet | 51.574 4 | 3.151 4 | 30.131 8 | 33.379 0 | 4.028 9 | 12.518 5 | 24.237 5 | 2.982 5 | 11.384 1 |
HDCWNet | 55.649 1 | 3.764 4 | 26.802 2 | 29.474 1 | 5.787 3 | 22.922 0 | 40.312 8 | 4.639 1 | 19.357 9 |
JSTASR | 55.404 1 | 3.482 6 | 28.166 8 | 28.838 8 | 6.059 0 | 13.251 2 | 39.977 3 | 4.500 5 | 22.012 9 |
DesnowNet | 58.487 0 | 3.265 2 | 22.623 1 | 39.875 0 | 3.988 3 | 13.655 9 | 42.540 9 | 4.501 7 | 9.358 0 |
AirNet | 54.280 1 | 3.113 9 | 24.102 5 | 37.785 9 | 3.849 8 | 18.953 8 | 35.771 3 | 4.244 9 | 8.865 1 |
LRMC | 58.719 4 | 3.708 1 | 23.952 0 | 38.958 1 | 3.142 8 | 26.065 9 | 36.664 0 | 4.312 6 | 8.066 7 |
MSCSC | 56.851 6 | 3.124 7 | 29.685 1 | 42.400 0 | 2.981 6 | 26.015 1 | 37.463 9 | 4.040 3 | 10.555 4 |
OTMSCSC | 56.508 2 | 3.103 4 | 29.086 4 | 38.994 3 | 4.140 9 | 26.905 0 | 39.287 0 | 4.407 5 | 19.684 8 |
本文算法 | 51.884 1 | 3.026 2 | 22.331 5 | 27.586 8 | 2.811 7 | 12.500 7 | 22.249 6 | 2.955 8 | 8.572 2 |
输入 | LRMC | MSCSC | OTMSCSC | 本文算法 |
---|---|---|---|---|
3046 | 2184 | 1317 | 594 | |
327 | 210 | 81 | 112 | |
792 | 423 | 312 | 289 |
Table 3 Running time comparisons (s)
输入 | LRMC | MSCSC | OTMSCSC | 本文算法 |
---|---|---|---|---|
3046 | 2184 | 1317 | 594 | |
327 | 210 | 81 | 112 | |
792 | 423 | 312 | 289 |
[1] |
周浦城, 张杰, 薛模根, 等. 基于卷积分析稀疏表示和相位一致性的低照度图像增强[J]. 电子学报, 2020, 48(1): 180-188.
DOI |
ZHOU P C, ZHANG J, XUE M G, et al. Low-light image enhancement based on convolutional analysis sparse representation and phase congruency[J]. Acta Electronica Sinica, 2020, 48(1): 180-188. (in Chinese) | |
[2] | 张学锋, 李金晶. 基于双注意力残差循环单幅图像去雨集成网络[J]. 软件学报, 2021, 32(10): 3283-3292. |
ZHANG X F, LI J J. Single image de-raining using a recurrent dual-attention-residual ensemble network[J]. Journal of Software, 2021, 32(10): 3283-3292. (in Chinese) | |
[3] |
贾童瑶, 卓力, 李嘉锋, 等. 基于深度学习的单幅图像去雾研究进展[J]. 电子学报, 2023, 51(1): 231-245.
DOI |
JIA T Y, ZHUO L, LI J F, et al. Research advances on deep learning based single image dehazing[J]. Acta Electronica Sinica, 2023, 51(1): 231-245. (in Chinese) | |
[4] | YANG T W, NSABIMANA V, WANG B F, et al. Snow fluff detection and removal from video images[C]// Ihe 43rd Annual Conference of the IEEE Industrial Electronics Society. New York: IEEE Press, 2017: 3840-3844. |
[5] |
LI Y J, WU R, JIA Z H, et al. Video desnowing and deraining via saliency and dual adaptive spatiotemporal filtering[J]. Sensors, 2021, 21(22): 7610: 1-7610:18.
DOI URL |
[6] |
KIM J H, SIM J Y, KIM C S. Video deraining and desnowing using temporal correlation and low-rank matrix completion[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2658-2670.
DOI URL |
[7] | LI M H, XIE Q, ZHAO Q, et al. Video rain streak removal by multiscale convolutional sparse coding[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6644-6653. |
[8] |
LI M H, CAO X Y, ZHAO Q, et al. Online rain/snow removal from surveillance videos[J]. IEEE Transactions on Image Processing, 2021, 30: 2029-2044.
DOI PMID |
[9] | CHEN W T, HUANG Z K, TSAI C C, et al. Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: toward a unified model[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 17632-17641. |
[10] | CHEN W T, FANG H Y, HSIEH C L, et al. ALL snow removed: single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 4176-4185. |
[11] | CHEN W T, FANG H Y, DING J J, et al. JSTASR: joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 754-770. |
[12] |
LIU Y F, JAW D W, HUANG S C, et al. DesnowNet: context-aware deep network for snow removal[J]. IEEE Transactions on Image Processing, 2018, 27(6): 3064-3073.
DOI URL |
[13] | LI B Y, LIU X, HU P, et al. All-In-one image restoration for unknown corruption[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 17431-17441. |
[14] |
EASLEY G, LABATE D, LIM W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.
DOI URL |
[15] | ZHANG X Y, YUAN X, CARIN L. Nonlocal low-rank tensor factor analysis for image restoration[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8232-8241. |
[16] |
XU H Y, JIANG G Y, YU M, et al. Tensor product and tensor-singular value decomposition based multi-exposure fusion of images[J]. IEEE Transactions on Multimedia, 2022, 24: 3738-3753.
DOI URL |
[17] |
TOM A J, GEORGE S N. A three-way optimization technique for noise robust moving object detection using tensor low-rank approximation, l1/2, and TTV regularizations[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1004-1014.
DOI URL |
[18] |
DUAN J M, JIA X, BARTLETT J, et al. Arbitrary order total variation for deformable image registration[J]. Pattern Recognition, 2023, 137: 109318.
DOI URL |
[19] |
KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.
DOI URL |
[20] |
WANG Y, PENG J J, ZHAO Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1227-1243.
DOI URL |
[21] |
BIOUCAS-DIAS J M, NASCIMENTO J M P. Hyperspectral subspace identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2435-2445.
DOI URL |
[22] |
JIANG N F, LUO J W, LIN J H, et al. Lightweight semi-supervised network for single image rain removal[J]. Pattern Recognition, 2023, 137: 109277.
DOI URL |
[23] | CHEN Z Y, WANG Y C, YANG Y, et al. PSD: principled synthetic-to-real dehazing guided by physical priors[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7176-7185. |
[1] | SHENG Jiajia1,2, YANG Xuezhi1,2, DONG Zhangyu1,2, JIAO Wei1,2. Fusion of SAR and Visible Images Based on NSST-IHS and Sparse Representation [J]. Journal of Graphics, 2018, 39(2): 201-208. |
[2] | WU Shihua1, WU Yiquan1,2,3,4,5,6, ZHOU Jianjiang1. Target Edge Extraction of Remote Sensing Images Based on Non-Subsampled Shearlet Transform and Improved Mathematical Morphology [J]. Journal of Graphics, 2017, 38(4): 523-530. |
[3] | . A Land-Cover Classification Method for Airborne LIDAR Data#br# Based on the Normal DS Evidence Theory [J]. Journal of Graphics, 2015, 36(6): 926-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||