Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 868-878.DOI: 10.11996/JG.j.2095-302X.2024040868
• Industrial Design • Previous Articles Next Articles
HUANG Yuzhe1(), WANG Xupeng1,2(
), CHEN Wenhui2, ZHOU Zhongze1, ZHAO Jiaxin2, WANG Yunqian2
Received:
2024-04-18
Accepted:
2024-06-24
Online:
2024-08-31
Published:
2024-09-03
Contact:
WANG Xupeng
About author:
First author contact:HUANG Yuzhe (1999-), master student. Her main research interests cover foot orthosis, computer-aided design. E-mail:1136344701@qq.com
Supported by:
CLC Number:
HUANG Yuzhe, WANG Xupeng, CHEN Wenhui, ZHOU Zhongze, ZHAO Jiaxin, WANG Yunqian. Full-contact orthopedic insole design for plantar pressure optimization[J]. Journal of Graphics, 2024, 45(4): 868-878.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040868
Fig. 13 Three-dimensional cubic unit cell structure ((a) Simple cubic; (b) Body-centered cubic; (c) Face-centered cubic; (d) Diamond; (e) Fluorite; (f) Kelvin)
Fig. 15 The amount of deformation displacement for different unit cell structures ((a) Simple cubic; (b) Body-centered cubic; (c) Face-centered cubic; (d) Diamond; (e) Fluorite; (f) Kelvin)
填充率/% | 晶胞管直径/mm | E/MPa |
---|---|---|
30 | 2.40 | 0.53 |
35 | 2.65 | 0.64 |
40 | 2.90 | 0.92 |
45 | 3.20 | 1.36 |
50 | 3.50 | 1.88 |
Table 1 Unit cell diameter and effective elastic modulus of structures with different filling rates
填充率/% | 晶胞管直径/mm | E/MPa |
---|---|---|
30 | 2.40 | 0.53 |
35 | 2.65 | 0.64 |
40 | 2.90 | 0.92 |
45 | 3.20 | 1.36 |
50 | 3.50 | 1.88 |
鞋垫区域 | E/MPa |
---|---|
足趾区 | 0.47 |
跖骨区 | 0.95 |
足弓区 | 2.47 |
足跟区 | 1.39 |
Table 2 The effective modulus of elasticity of the lattice structure is used in each zone of the insole [10]
鞋垫区域 | E/MPa |
---|---|
足趾区 | 0.47 |
跖骨区 | 0.95 |
足弓区 | 2.47 |
足跟区 | 1.39 |
鞋垫类型 | 形态 | 结构 | 材料 | 鞋垫厚度/mm |
---|---|---|---|---|
平板鞋垫 | 二维 平板 | 均质 无减压结构 | TPU | 7 |
优化前 矫形鞋垫 | 三维 全接触 | 均质 无减压结构 | TPU | 7 |
优化后 矫形鞋垫 | 三维 全接触 | 有减压 结构 | TPU+ 乳胶 | 5+ 2 |
Table 3 Insole parameter definition table
鞋垫类型 | 形态 | 结构 | 材料 | 鞋垫厚度/mm |
---|---|---|---|---|
平板鞋垫 | 二维 平板 | 均质 无减压结构 | TPU | 7 |
优化前 矫形鞋垫 | 三维 全接触 | 均质 无减压结构 | TPU | 7 |
优化后 矫形鞋垫 | 三维 全接触 | 有减压 结构 | TPU+ 乳胶 | 5+ 2 |
裸足状态 | S.Max/kPa | S.Min/kPa | S.Ave/kPa |
---|---|---|---|
裸足 | 88.5 | 24.80×10-4 | 18.2 |
平板鞋垫 | 58.6 | 23.35×10-4 | 16.4 |
优化前矫形鞋垫 | 53.7 | 19.39×10-4 | 15.1 |
优化后矫形鞋垫 | 41.6 | 13.68×10-4 | 13.3 |
Table 4 Maximum, minimum, and average plantar stress
裸足状态 | S.Max/kPa | S.Min/kPa | S.Ave/kPa |
---|---|---|---|
裸足 | 88.5 | 24.80×10-4 | 18.2 |
平板鞋垫 | 58.6 | 23.35×10-4 | 16.4 |
优化前矫形鞋垫 | 53.7 | 19.39×10-4 | 15.1 |
优化后矫形鞋垫 | 41.6 | 13.68×10-4 | 13.3 |
Fig. 22 Optimized the simulation comparison of the front and rear insole models ((a) Bare feet; (b) Flat insole; (c) Optimized anterior orthopedic insole; (d) Optimized posterior orthopedic insoles)
Fig. 23 Static plantar stress test ((a) Bare feet; (b) Orthopedic insoles before wearing optimization; (c) Wearing orthopedic insoles after wearing optimization)
Fig. 25 Static plantar pressure distribution contour of subjects with three foot types ((a) Bare feet; (b) Wearing optimized anterior orthopedic insole; (c) Wearing optimized posterior orthopedic insole; P.Max: peak pressure;Ave.P: average pressure)
Fig. 26 Dynamic foot pressure distribution contour and foot pressure center trajectory map of high arched feet ((a) Bare feet; (b) Wearing optimized anterior orthopedic insole; (c) Wearing optimized posterior orthopedic insole)
Fig. 27 Dynamic plantar peak pressure before and after wearing orthopedic insoles in subjects with three foot types ((a) Flat feet; (b) Normal feet; (c) High arched feet)
[1] | CHEUNG J T M, ZHANG M. A 3-dimensional finite element model of the human foot and ankle for insole design[J]. Archives of Physical Medicine and Rehabilitation, 2005, 86(2): 353-358. |
[2] |
OWINGS T M, WOERNER J L, FRAMPTON J D, et al. Custom therapeutic insoles based on both foot shape and plantar pressure measurement provide enhanced pressure relief[J]. Diabetes Care, 2008, 31(5): 839-844.
DOI PMID |
[3] | CHEN W P, JU C W, TANG F T. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis[J]. Clinical Biomechanics, 2003, 18(6): S17-S24. |
[4] | 弓太生, 徐玲玲, 汤运启. 全接触式鞋垫的国内外研究进展[J]. 中国皮革, 2013, 42(20): 112-114, 119. |
GONG T S, XU L L, TANG Y Q. Research progress on total contact insoles at home and abroad[J]. China Leather, 2013, 42(20): 112-114, 119 (in Chinese). | |
[5] |
马俪芳, 王立朝, 李剑, 等. 3D打印矫形鞋垫研究进展[J]. 科技导报, 2022, 40(13): 57-64.
DOI |
MA L F, WANG L C, LI J, et al. Research progress of 3D printing orthopedic insoles[J]. Science & Technology Review, 2022, 40(13): 57-64 (in Chinese). | |
[6] |
张芳兰, 陈瑞营, 邵帅, 等. 基于参数化逆向建模的踝足矫形器设计[J]. 图学学报, 2020, 41(1): 141-147.
DOI |
ZHANG F L, CHEN R Y, SHAO S, et al. Ankle-foot orthosis design based on parametric reverse modeling[J]. Journal of Graphics, 2020, 41(1): 141-147 (in Chinese). | |
[7] | 黄忆, 朱兆华, 王佳, 等. 基于三维足形与足底压力分布的鞋垫参数化定制设计[EB/OL]. [2024-02-09]. https://kns.cnki.net/kcms/detail/10.1034.T.20231025.1630.002.html. |
HUANG Y, ZHU Z H, WANG J, et al. Parametric custom design of insoles based on 3D foot shape and plantar pressure distribution[EB/OL]. [2024-02-09]. https://kns.cnki.net/kcms/detail/10.1034.T.20231025.1630.002.html (in Chinese). | |
[8] | LIU X Y, YUE Y, WU X Y, et al. Finite element analysis of shock absorption of porous soles established by grasshopper and UG secondary development[J]. Mathematical Problems in Engineering, 2020, 2020: 2652137. |
[9] | MA Z, LIN J C, XU X Y, et al. Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(1): 57-63. |
[10] | 胡军, 刘国庆, 王芳, 等. 可变刚度缓冲鞋垫结构设计及优化[J]. 医用生物力学, 2023, 38(3): 574-579. |
HU J, LIU G Q, WANG F, et al. Structural design and optimization of cushioning insole with variable stiffness[J]. Journal of Medical Biomechanics, 2023, 38(3): 574-579 (in Chinese). | |
[11] | DONG G Y, TESSIER D, ZHAO Y F. Design of shoe soles using lattice structures fabricated by additive manufacturing[J]. Proceedings of the Design Society: International Conference on Engineering Design, 2019, 1(1): 719-728. |
[12] | 赵碎浪, 祁子芮, 曹中华, 等. 3D打印支撑鞋垫对扁平足足底压力分布的影响[J]. 皮革科学与工程, 2022, 32(3): 85-89. |
ZHAO S L, QI Z R, CAO Z H, et al. Effect of 3D printed arch-support insoles on plantar pressure distribution in flat feet[J]. Leather Science and Engineering, 2022, 32(3): 85-89 (in Chinese). | |
[13] | 李鹏. 基于3D打印扁平足个性化矫正鞋垫的设计及其对平衡能力的影响[D]. 苏州: 苏州大学, 2017. |
LI P. The design of personalized orthopedic insoles for flatfoot based on 3D print and its impact on balance ability[D]. Suzhou: Soochow University, 2017 (in Chinese). | |
[14] |
赵晓运, 宋绪丁. 基于MATLAB的叶片四次NURBS曲面反求重构及分析[J]. 机械设计, 2020, 37(7): 59-67.
DOI |
ZHAO X Y, SONG X D. Reverse reconstruction and analysis of the vane’s quartic NURBS surface based on MATLAB[J]. Journal of Machine Design, 2020, 37(7): 59-67 (in Chinese). | |
[15] | 刘慧. 反向工程在NURBS曲面造型中的研究与应用[J]. 工程图学学报, 2009, 30(2): 101-104. |
LIU H. Research and application on reverse engineering used in NURBS surface modeling[J]. Journal of Engineering Graphics, 2009, 30(2): 101-104 (in Chinese). | |
[16] | 揭红琴, 陈崟, 张杰增, 等. 鞋垫材料与结构对舒适性的影响综述[J]. 西部皮革, 2023, 45(2): 19-21. |
JIE H Q, CHEN Y, ZHANG J Z, et al. A review of the influence of insole material and construction on comfort[J]. West Leather, 2023, 45(2): 19-21 (in Chinese). | |
[17] | 姜缪文. 3D打印和数值模拟技术在足底矫形器中的应用研究[D]. 北京: 北京工业大学, 2018. |
JIANG M W. Application of 3D printing and numerical simulation technique in plantar orthosis[D]. Beijing: Beijing University of Technology, 2018 (in Chinese). |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||