[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[2] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788.
|
[3] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525.
|
[4] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/1804.02767.pdf.
|
[5] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[6] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587.
|
[7] |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448.
|
[8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI
PMID
|
[9] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer. New York: IEEE Press, 2017: 2961-2969.
|
[10] |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162.
|
[11] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI
|
|
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125. (in Chinese)
DOI
|
[12] |
朱强军, 胡斌, 汪慧兰, 等. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432.
DOI
|
|
ZHU Q J, HU B, WANG H L, et al. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432. (in Chinese)
DOI
|
[13] |
牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735.
DOI
|
|
NIU W H, GUO X. Rotating target detection algorithm in ship remote sensing images based on YOLOv8[J]. Journal of Graphics, 2024, 45(4): 726-735. (in Chinese)
DOI
|
[14] |
MINDERER M, GRITSENKO A, STONE A, et al. Simple open-vocabulary object detection[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 728-755.
|
[15] |
LI L H, ZHANG P, ZHANG H, et al. Grounded language-image pre-training[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10965-10975.
|
[16] |
CHENG T H, SONG L, GE Y X, et al. Yolo-world: real-time open-vocabulary object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 16901-16911.
|
[17] |
袁珑, 李秀梅, 潘振雄, 等. 面向目标检测的对抗样本综述[J]. 中国图象图形学报, 2022, 27(10): 2873-2896.
|
|
YUAN L, LI X M, PAN Z X, et al. Review of adversarial examples for object detection[J]. Journal of Image and Graphics, 2022, 27(10): 2873-2896. (in Chinese)
|
[18] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/1312.6199v4.pdf.
|
[19] |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/1412.6572.pdf.
|
[20] |
KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[M]// YAMPOLSKIY R V. Artificial Intelligence Safety and Security. New York: Chapman and Hall/CRC, 2018: 99-112.
|
[21] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/1706.06083.pdf.
|
[22] |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2574-2582.
|
[23] |
KONG Z L, GUO J F, LI A, et al. PhysGAN: generating physical-world-resilient adversarial examples for autonomous driving[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 14254-14263.
|
[24] |
WEI X X, LIANG S Y, CHEN N, et al. Transferable adversarial attacks for image and video object detection[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/1811.12641.pdf.
|
[25] |
XIE C H, WANG J Y, ZHANG Z S, et al. Adversarial examples for semantic segmentation and object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 1378-1387.
|
[26] |
LI Y Z, TIAN D, CHANG M C, et al. Robust adversarial perturbation on deep proposal-based models[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/1809.05962.pdf.
|
[27] |
ZHANG H T, ZHOU W G, LI H Q. Contextual adversarial attacks for object detection[C]// 2020 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2020: 1-6.
|
[28] |
CHOW K H, LIU L, GURSOY M E, et al. TOG: targeted adversarial objectness gradient attacks on real-time object detection systems[EB/OL]. [2024-08-15]. https://arxiv.org/pdf/2004.04320.pdf.
|