Journal of Graphics ›› 2024, Vol. 45 ›› Issue (6): 1364-1374.DOI: 10.11996/JG.j.2095-302X.2024061364
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
LIU Chang1(
), ZHANG Yuming1, ZHANG Qian2, OU Qiaofeng1, ZHAO Tongshuo1, CHEN Hao1(
), SHI Lei3
Received:2024-07-04
Accepted:2024-08-25
Online:2024-12-31
Published:2024-12-24
Contact:
CHEN Hao
About author:First author contact:LIU Chang (1983-), lecturer, Ph.D. His main research interests cover virtual reality and computer graphics. E-mail:70202@nchu.edu.cn
Supported by:CLC Number:
LIU Chang, ZHANG Yuming, ZHANG Qian, OU Qiaofeng, ZHAO Tongshuo, CHEN Hao, SHI Lei. Web3D global illumination cloud rendering based on advanced DDGI[J]. Journal of Graphics, 2024, 45(6): 1364-1374.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024061364
Fig. 4 Layout optimization method basic flow ((a) The original scene; (b) Simplify the scene; (c) Classification results; (d) Layout optimization results)
Fig. 5 Layout optimization before and after comparison result ((a) Before layout optimization; (b) After layout optimization; (c) Number of resources before optimization; (d) Number of resources after optimization)
| 场景 | 三角面片数量/k | 场景大小/M |
|---|---|---|
| Sponza | 262.3 | 89.7 |
| Kindergarten | 115.2 | 72.3 |
| San_miguel | 5617.5 | 1863.7 |
Table 1 Scene data
| 场景 | 三角面片数量/k | 场景大小/M |
|---|---|---|
| Sponza | 262.3 | 89.7 |
| Kindergarten | 115.2 | 72.3 |
| San_miguel | 5617.5 | 1863.7 |
| 方法 | SSIM | 帧率 | 数据量/K | 资源数 |
|---|---|---|---|---|
| DDGI | 0.73 | 120 | 480 | 3 |
| 细分未布局优化 | 0.78 | 85 | 833 | 48 |
| 细分且布局优化 | 0.80 | 97 | 615 | 12 |
Table 2 Test results of the three methods
| 方法 | SSIM | 帧率 | 数据量/K | 资源数 |
|---|---|---|---|---|
| DDGI | 0.73 | 120 | 480 | 3 |
| 细分未布局优化 | 0.78 | 85 | 833 | 48 |
| 细分且布局优化 | 0.80 | 97 | 615 | 12 |
| 布局 | SSIM | 帧率 | 数据量 | 资源数 |
|---|---|---|---|---|
| DDGI | 0.73 | 120 | 480 K | 3 |
| Ours(113) | 0.80 | 97 | 615 K | 48 |
| DDGI(223) | 0.80 | 70 | 3.3 M | 3 |
Table 3 Test results under different layouts
| 布局 | SSIM | 帧率 | 数据量 | 资源数 |
|---|---|---|---|---|
| DDGI | 0.73 | 120 | 480 K | 3 |
| Ours(113) | 0.80 | 97 | 615 K | 48 |
| DDGI(223) | 0.80 | 70 | 3.3 M | 3 |
| 场景 | 布局 (长×宽×高) | 数据量 (Our system) | 数据量 (Cloud baking)/M | |
|---|---|---|---|---|
| Sponza | 113 | DDGI | 480 K | 5.6 |
| 113 | Ours | 615 K | ||
| 223 | DDGI | 3.3 M | ||
| Kindergarten | 103 | DDGI | 679 K | 4.8 |
| 103 | Ours | 1 096 K | ||
| 203 | DDGI | 4.0 M | ||
| San_miguel | 113 | DDGI | 807 K | 7.4 |
| 113 | Ours | 1 249 K | ||
| 223 | DDGI | 4.9 M | ||
Table 4 Transmission data volume comparison
| 场景 | 布局 (长×宽×高) | 数据量 (Our system) | 数据量 (Cloud baking)/M | |
|---|---|---|---|---|
| Sponza | 113 | DDGI | 480 K | 5.6 |
| 113 | Ours | 615 K | ||
| 223 | DDGI | 3.3 M | ||
| Kindergarten | 103 | DDGI | 679 K | 4.8 |
| 103 | Ours | 1 096 K | ||
| 203 | DDGI | 4.0 M | ||
| San_miguel | 113 | DDGI | 807 K | 7.4 |
| 113 | Ours | 1 249 K | ||
| 223 | DDGI | 4.9 M | ||
| 场景 | 云端计算 时间 | Web端计算 时间 | 传输 时间 |
|---|---|---|---|
| Kindergarten | 7 | 6 | 159 |
| Sponza | 10 | 7 | 164 |
| San_miguel | 19 | 46 | 168 |
Table 5 System delay table/ms
| 场景 | 云端计算 时间 | Web端计算 时间 | 传输 时间 |
|---|---|---|---|
| Kindergarten | 7 | 6 | 159 |
| Sponza | 10 | 7 | 164 |
| San_miguel | 19 | 46 | 168 |
| [1] | 刘畅, 霍宇驰, 张严辞, 等. 移动在线实时绘制技术研究综述[J]. 中国图象图形学报, 2022, 27(6): 1877-1897. |
| LIU C, HUO Y C, ZHANG Y C, et al. A review of real-time rendering technology based on mobile internet platforms[J]. Journal of Image and Graphics, 2022, 27(6): 1877-1897. (in Chinese) | |
| [2] | GLASSNER A S. An introduction to ray tracing[M]. San Francisco: Morgan Kaufmann Pub., 1989: 46-53. |
| [3] | LAFORTUNE E P, WILLEMS Y D. Bi-directional path tracing[EB/OL]. [2024-05-03]. http://www.lafortune.eu/publications/Alvor.html. |
| [4] | GREGER G, SHIRLEY P, HUBBARD P M, et al. The irradiance volume[J]. IEEE Computer Graphics and Applications, 1998, 18(2): 32-43. |
| [5] | MAJERCIK Z, GUERTIN J P, NOWROUZEZAHRAI D, et al. Dynamic diffuse global illumination with ray-traced irradiance fields[J]. Journal of Computer Graphics Techniques, 2019, 8(2): 1-30. |
| [6] | MACLNTYRE B, SMITH T F. Thoughts on the future of WebXR and the immersive web[C]// 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct. New York: IEEE Press, 2018: 338-342. |
| [7] | SIRIWARDHANA Y, PORAMBAGE P, LIYANAGE M, et al. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1160-1192. |
| [8] | MINOPOULOS G, PSANNIS K E. Opportunities and challenges of tangible XR applications for 5G networks and beyond[J]. IEEE Consumer Electronics Magazine, 2023, 12(6): 9-19. |
| [9] | CARRASCOSA M, BELLALTA B. Cloud-gaming: analysis of Google stadia traffic[J]. Computer Communications, 2022, 188: 99-116. |
| [10] | HOU X S, DEY S, ZHANG J Z, et al. Predictive adaptive streaming to enable mobile 360-degree and VR experiences[J]. IEEE Transactions on Multimedia, 2021, 23: 716-731. |
| [11] | LIU X, VLACHOU C, QIAN F, et al. Firefly: untethered multi-user VR for commodity mobile devices[C]// 2020 USENIX Conference on USENIX Annual Technical Conference. Berkeley: USENIX Association, 2020: 65. |
| [12] | MENG J Y, PAUL S, HU Y C. Coterie: exploiting frame similarity to enable high-quality multiplayer VR on commodity mobile devices[C]// The 25th International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2020: 923-937. |
| [13] | LAGHARI A A, HE H, MEMON K A, et al. Quality of experience (QoE) in cloud gaming models: a review[J]. Multiagent and Grid Systems, 2019, 15(3): 289-304. |
| [14] | BHOJAN A, NG S P, NG J, et al. CloudyGame: enabling cloud gaming on the edge with dynamic asset streaming and shared game instances[J]. Multimedia Tools and Applications, 2020, 79(43): 32503-32523. |
| [15] | LI Y S, ZHAO C J, TANG X Y, et al. Towards minimizing resource usage with QoS guarantee in cloud gaming[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(2): 426-440. |
| [16] | JAYA I, LI Y S, CAI W T. Improving scalability, sustainability and availability via workload distribution in edge-cloud gaming[C]// The 30th ACM International Conference on Multimedia. New York: ACM, 2022: 2987-2995. |
| [17] | LIU C, SONG H L, FANG T, et al. Web-cloud collaborative mobile online 3D rendering system[J]. Security and Communication Networks, 2022, 2022(1): 4748946. |
| [18] | CRASSIN C, LUEBKE D, MARA M, et al. CloudLight: a system for amortizing indirect lighting in real-time rendering[J]. Journal of Computer Graphics Techniques (JCGT), 2015, 4(4): 1-27. |
| [19] | LIU C, OOI W T, JIA J Y, et al. Cloud baking: Collaborative scene illumination for dynamic Web3D scenes[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2018, 14(3s): 59. |
| [20] | JIANG W, GU J W. Video stitching with spatial-temporal content-preserving warping[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2015: 42-48. |
| [21] | BUGEJA K, DEBATTISTA K, SPINA S. An asynchronous method for cloud-based rendering[J]. The Visual Computer, 2019, 35(12): 1827-1840. |
| [22] |
邵威, 刘畅, 贾金原. 基于光照贴图的Web3D全局光照协作式云渲染系统[J]. 系统仿真学报, 2020, 32(4): 649-659.
DOI |
|
SHAO W, LIU C, JIA J Y. Lightmap-based GI collaborative rendering system for Web3D application[J]. Journal of System Simulation, 2020, 32(4): 649-659. (in Chinese)
DOI |
|
| [23] | STENGEL M, MAJERCIK Z, BOUDAOUD B, et al. A distributed, decoupled system for losslessly streaming dynamic light probes to thin clients[C]// The 12th ACM Multimedia Systems Conference. New York: ACM, 2021: 159-172. |
| [24] | MUELLER J H, VOGLREITER P, DOKTER M, et al. Shading atlas streaming[J]. ACM Transactions on Graphics, 2018, 37(6): 199. |
| [25] | 陈主昕, 杨沁七, 陈瑞, 等. 基于虚拟光源的实时半透明材质渲染[J]. 图学学报, 2022, 43(4): 707-714. |
|
CHEN Z X, YANG Q Q, CHEN R, et al. Virtual light-based translucent material rendering in real-time[J]. Journal of Graphics, 2022, 43(4): 707-714. (in Chinese)
DOI |
|
| [26] | LAMBERS M. Survey of cube mapping methods in interactive computer graphics[J]. The Visual Computer, 2020, 36(5): 1043-1051. |
| [27] | ENGELHARDT T, DACHSBACHER C. Octahedron environment maps[EB/OL]. [2024-05-03]. https://dblp.org/db/conf/vmv/vmv2008.html#EngelhardtD08. |
| [28] | SEELEY R T. Spherical harmonics[J]. The American Mathematical Monthly, 1966, 73(4P2): 115-121. |
| [29] | MCGUIRE M, MARA M, NOWROUZEZAHRAI D, et al. Real-time global illumination using precomputed light field probes[C]// The 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2017: 2. |
| [30] | MAJERCIK Z, MÜLLER T, KELLER A, et al. Dynamic diffuse global illumination resampling[C]// ACM SIGGRAPH 2021 Talks. New York: ACM, 2021: 24. |
| [31] | PHARR M, JAKOB W, HUMPHREYS G. Physically based rendering: From theory to implementation[M]. Cambridge: The MIT Press, 2023: 10-14. |
| [32] | DONNELLY W, LAURITZEN A. Variance shadow maps[C]// The 2006 Symposium on Interactive 3D Graphics and Games. New York: ACM, 2006: 161-165. |
| [1] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
| [2] | FENG Zi-yan, WU Rui-cheng, BO Peng-bo. Fast rendering of Boolean difference of solidsfor CNC machining simulation [J]. Journal of Graphics, 2022, 43(6): 1088-1095. |
| [3] | Wang Fang1, Qin Leihua2. Global Illumination Real-Time Rendering Based on BRDF and#br# GPU Parallel Computing [J]. Journal of Graphics, 2016, 37(5): 583-591. |
| [4] | Ye Jianhua, Gao Chenghui, Jiang Jibin. Product Selection and Customization System [J]. Journal of Graphics, 2013, 34(5): 121-125. |
| [5] | Feng Guizhen, Chi Jianbin, Zhangzengqiang, Wang Chen. A dynamic interactive simulation system for shield machine [J]. Journal of Graphics, 2013, 34(1): 101-104. |
| [6] | Feng Kaiping, Pan Guangyang. A collaborative design system for customized lighting based on Web3D [J]. Journal of Graphics, 2012, 33(3): 56-60. |
| [7] | Wu Yanfang. Virtual exhibition and customization based on Web3D [J]. Journal of Graphics, 2012, 33(3): 85-89. |
| [8] | CHEN Yu, LIN Wei. The Algorithm and Implementation of Picking 3D Figure by Web3D Engine [J]. Journal of Graphics, 2011, 32(6): 82-88. |
| [9] | ZHAO Lei, ZHAO Gang, TAN Dun-ming. Real-time Rending for Complex Product Model Based on Octree [J]. Journal of Graphics, 2011, 32(3): 69-74. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||