Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 437-448.DOI: 10.11996/JG.j.2095-302X.2025020437
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
WANG Wensong1(), ZHOU Zijun1, XIN Shiqing1(
), TU Changhe1, WANG Wenping2
Received:
2024-10-25
Accepted:
2024-11-06
Online:
2025-04-30
Published:
2025-04-24
Contact:
XIN Shiqing
About author:
First author contact:WANG Wensong (1998-), master student. Her main research interest covers computer graphics. E-mail:wensong.chris@qq.com
Supported by:
CLC Number:
WANG Wensong, ZHOU Zijun, XIN Shiqing, TU Changhe, WANG Wenping. Tracing high-quality isolines for discrete geodesic distance fields[J]. Journal of Graphics, 2025, 46(2): 437-448.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020437
Fig. 7 Algorithmic pipeline ((a) Shows the input model; (b) Shows a mesh triangle and a geodesic path (in red) and uses the cubic function interpolation; (c) Shows a set of sites (red points are trisection points and blue ones are interpolated points satisfying k=1) in triangle; (d) Builds Apollonius diagram for those sites; (e) Builds the Apollonius vertices and Steiner point triangulation; (f) Shows the isolines of the geodesic distance field)
Fig. 8 Geometric features of iso-distance curves of geodesic distance field ((a) Accurate contour lines; (b) The linear interpolation method cannot capture geometric features such as ridges; (c) The method presented in this paper generates high-quality approximate contour curves)
Fig. 9 Efficiency of time and space for the proposed method ((a)~(b) The running time of our method to compute isolines on the Buddha and Gargoyle model with 2 000 to 20 000 vertices and 0, 2, 10, 20, 50 Steiner points; (c)~(d) Plotting the memory consumption on larger scaled Armadillo and Gargoyle models with 5 000 to 350 000 vertices)
Model | |V|/K | k | t/s | RAM/MB | ||
---|---|---|---|---|---|---|
Beetle | 0.6 | 0 2 | 0.012 0.015 | 0.02 | 0.170 0.120 | 0.516 |
5.0 | 0 2 | 0.246 0.265 | 0.18 | 0.082 0.019 | 0.223 | |
Bottle | 1.0 | 0 2 | 0.037 0.041 | 0.04 | 0.132 0.096 | 0.425 |
10.0 | 0 2 | 0.584 0.624 | 0.34 | 0.021 0.009 | 0.096 | |
Fertility | 1.2 | 0 2 | 0.044 0.059 | 0.06 | 0.097 0.037 | 0.227 |
12.0 | 0 2 | 0.855 1.101 | 0.47 | 0.038 0.037 | 0.140 | |
Gargoyle | 5 | 0 2 | 0.195 0.212 | 0.13 | 0.039 0.030 | 0.199 |
50 | 0 2 | 2.861 3.855 | 2.27 | 0.005 0.004 | 0.019 | |
Buddha | 5 | 0 2 | 0.187 0.199 | 0.11 | 0.055 0.028 | 0.100 |
50 | 0 2 | 2.682 2.891 | 0.52 | 0.012 0.004 | 0.035 |
Table 1 Comparison of errors between ours method and linear interpolation
Model | |V|/K | k | t/s | RAM/MB | ||
---|---|---|---|---|---|---|
Beetle | 0.6 | 0 2 | 0.012 0.015 | 0.02 | 0.170 0.120 | 0.516 |
5.0 | 0 2 | 0.246 0.265 | 0.18 | 0.082 0.019 | 0.223 | |
Bottle | 1.0 | 0 2 | 0.037 0.041 | 0.04 | 0.132 0.096 | 0.425 |
10.0 | 0 2 | 0.584 0.624 | 0.34 | 0.021 0.009 | 0.096 | |
Fertility | 1.2 | 0 2 | 0.044 0.059 | 0.06 | 0.097 0.037 | 0.227 |
12.0 | 0 2 | 0.855 1.101 | 0.47 | 0.038 0.037 | 0.140 | |
Gargoyle | 5 | 0 2 | 0.195 0.212 | 0.13 | 0.039 0.030 | 0.199 |
50 | 0 2 | 2.861 3.855 | 2.27 | 0.005 0.004 | 0.019 | |
Buddha | 5 | 0 2 | 0.187 0.199 | 0.11 | 0.055 0.028 | 0.100 |
50 | 0 2 | 2.682 2.891 | 0.52 | 0.012 0.004 | 0.035 |
Fig. 11 Our results with k=2. Our results and the results of the linear interpolation method are rendered in black and red, respectively ((a) |V|=5K,ε=0.019%; (b) |V|=5K; (c) |V|=1K; (d) |V|=1.2K, ε=0.074%)
Model | |V|/K | 文献[ | Ours | ||
---|---|---|---|---|---|
t/s | RAM/MB | t/s | RAM/MB | ||
Beetle | 0.6 5.0 | 0.327 2.831 | 0.7 14.4 | 0.236 2.284 | 0.02 0.18 |
Bottle | 1.0 10.0 | 0.843 6.791 | 1.4 39.5 | 0.432 5.216 | 0.04 0.34 |
Fertility | 1.2 12.0 | 0.727 7.287 | 2.1 58.8 | 0.657 5.433 | 0.06 0.47 |
Gargoyle | 5.0 50.0 | 3.357 30.086 | 7.9 176.6 | 2.195 23.877 | 0.13 2.27 |
Buddha | 5.0 50.0 | 3.574 32.439 | 9.0 153.6 | 2.736 27.372 | 0.11 0.52 |
Table 2 Runtime performance between Literature [1] and Ours
Model | |V|/K | 文献[ | Ours | ||
---|---|---|---|---|---|
t/s | RAM/MB | t/s | RAM/MB | ||
Beetle | 0.6 5.0 | 0.327 2.831 | 0.7 14.4 | 0.236 2.284 | 0.02 0.18 |
Bottle | 1.0 10.0 | 0.843 6.791 | 1.4 39.5 | 0.432 5.216 | 0.04 0.34 |
Fertility | 1.2 12.0 | 0.727 7.287 | 2.1 58.8 | 0.657 5.433 | 0.06 0.47 |
Gargoyle | 5.0 50.0 | 3.357 30.086 | 7.9 176.6 | 2.195 23.877 | 0.13 2.27 |
Buddha | 5.0 50.0 | 3.574 32.439 | 9.0 153.6 | 2.736 27.372 | 0.11 0.52 |
Fig. 12 The triangle is partitioned into a set of sub-regions such that each window dominates a sub-region via computing an Apollonius diagram w.r.t the roots
Fig. 13 Applying ours method ((a) The fast marching method; (b) The heat method. We color our results and the linear interpolation results in black and red, respectively)
[1] | LIU Y J, CHEN Z Q, TANG K. Construction of iso-contours, bisectors, and Voronoi diagrams on triangulated surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1502-1517. |
[2] | VAN KREVELD M. Efficient methods for isoline extraction from a TIN[J]. International Journal of Geographical Information Systems, 1996, 10(5): 523-540. |
[3] | XIN S Q, WANG G J. Applying the improved Chen and Han’s algorithm to different versions of shortest path problems on a polyhedral surface[J]. Computer-Aided Design, 2010, 42(10): 942-951. |
[4] | SURAZHSKY V, SURAZHSKY T, KIRSANOV D, et al. Fast exact and approximate geodesics on meshes[J]. ACM Transactions on Graphics, 2005, 24(3): 553-560. |
[5] |
BIKTASHEV V N, HOLDEN A V. Re-entrant activity and its control in a model of mammalian ventricular tissue[J]. Proceedings of the Royal Society B: Biological Sciences, 1996, 263(1375): 1373-1382.
PMID |
[6] | SHARIR M, SCHORR A. On shortest paths in polyhedral spaces[C]// The 16th Annual ACM Symposium on Theory of Computing. New York: ACM, 1984: 144-153. |
[7] | MELVÆR E L, REIMERS M. Geodesic polar coordinates on polygonal meshes[J]. Computer Graphics Forum, 2012, 31(8): 2423-2435. |
[8] |
KIMMEL R, SETHIAN J A. Computing geodesic paths on manifolds[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15): 8431-8435.
PMID |
[9] | CRANE K, WEISCHEDEL C, WARDETZKY M. Geodesics in heat: a new approach to computing distance based on heat flow[J]. ACM Transactions on Graphics, 2013, 32(5): 152. |
[10] | NEWMAN T S, YI H. A survey of the marching cubes algorithm[J]. Computers & Graphics, 2006, 30(5): 854-879. |
[11] | MITCHELL J S B, MOUNT D M, PAPADIMITRIOU C H. The discrete geodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668. |
[12] | GEHRE A, BOMMES D, KOBBELT L. Geodesic iso-curve signature[EB/OL]. [2024-08-25]. https://diglib.eg.org/items/8e9e0ae1-0edc-4d0e-8774-4a3801e5c429. |
[13] | BOMMES D, KOBBELT L. Accurate computation of geodesic distance fields for polygonal curves on triangle meshes[EB/OL]. [2024-08-25]. https://www.graphics.rwth-aachen.de/publication/0363/. |
[14] | CHEN J D, HAN Y J. Shortest paths on a polyhedron[C]// The 6th Annual Symposium on Computational Geometry. New York: ACM, 1990: 360-369. |
[15] | LIU Y J, ZHOU Q Y, HU S M. Handling degenerate cases in exact geodesic computation on triangle meshes[J]. The Visual Computer, 2007, 23(9/11): 661-668. |
[16] | XIN S Q, WANG G J. Improving Chen and Han's algorithm on the discrete geodesic problem[J]. ACM Transactions on Graphics, 2009, 28(4): 104. |
[17] | YING X, XIN S Q, HE Y. Parallel Chen-Han algorithm for discrete geodesics[J]. ACM Transactions on Graphics, 2014, 33(1): 9. |
[18] | SETHIAN J A, VLADIMIRSKY A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5699-5703. |
[19] | MÉMOLI F, SAPIRO G. Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces[J]. Journal of Computational Physics, 2001, 173(2): 730-764. |
[20] | SPIRA A, KIMMEL R. An efficient solution to the eikonal equation on parametric manifolds[J]. Interfaces and Free Boundaries, 2004, 6(3): 315-327. |
[21] | WEBER O, DEVIR Y S, BRONSTEIN A M, et al. Parallel algorithms for approximation of distance maps on parametric surfaces[J]. ACM Transactions on Graphics, 2008, 27(4): 104. |
[22] | CAMPEN M, KOBBELT L. Walking on broken mesh: defect‐tolerant geodesic distances and parameterizations[J]. Computer Graphics Forum, 2011, 30(2): 623-632. |
[23] | XIN S Q, QUYNH D T P, YING X, et al. A global algorithm to compute defect-tolerant geodesic distance[C]// The SIGGRAPH Asia 2012 Technical Briefs. New York: ACM, 2012: 23. |
[24] | XIN S Q, YING X, HE Y. Constant-time all-pairs geodesic distance query on triangle meshes[C]// The ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2012: 31-38. |
[25] | YING X, WANG X N, HE Y. Saddle vertex graph: a novel solution to the discrete geodesic problem[J]. ACM Transactions on Graphics, 2013, 32(6): 170. |
[26] | WANG X N, FANG Z, WU J J, et al. Discrete geodesic graph for computing geodesic distances on polyhedral surfaces[J]. Computer Aided Geometric Design, 2017, 52-53: 262-284. |
[27] | 刘金义, 刘爽. Voronoi图应用综述[J]. 工程图学学报, 2004, 25(2): 125-132. |
LIU J Y, LIU S. A survey on applications of Voronoi diagrams[J]. Journal of Graphics, 2004, 25(2): 125-132 (in Chinese). | |
[28] | AURENHAMMER F. Power diagrams: properties, algorithms and applications[J]. SIAM Journal on Computing, 1987, 16(1): 78-96. |
[29] | 方澍, 骆晨丹, 胡凯, 等. 阿波罗尼斯圆定理, 性质及应用探究[J]. 创新教育研究, 2023, 11: 431-438. |
FANG S, LUO C D, HU K, et al. Apollonius circle theorem, properties and applications[J]. Creative Education Studies, 2023, 11: 431-438 (in Chinese). | |
[30] | EMIRIS I Z, KARAVELAS M I. The predicates of the Apollonius diagram: algorithmic analysis and implementation[J]. Computational Geometry, 2006, 33(1/2): 18-57. |
[1] | Zhou Min, Zheng Guolei, Chen Shulin. The Solution to Determine the Bounding Rectangle with Maximum Aspect Ratio for 2D Graphics [J]. Journal of Graphics, 2013, 34(4): 46-53. |
[2] | Wang Jiechen, Pu Yingxia, Cui Can, Chen Gang, Ma Jinsong. A parallel algorithm for generating Voronoi diagrams based on point-set adaptive grouping [J]. Journal of Graphics, 2012, 33(6): 7-13. |
[3] | Li Hongjun, Zhang Xiaopeng. Analysis and improvement of smallest enclosing disk algorithm on discrete set of points [J]. Journal of Graphics, 2012, 33(2): 34-38. |
[4] | CHEN Hai, WANG Xin-min, JIAO Yu-song, LI Yan. An Optimal Algorithm for Calculating the Width of Convex Polygons [J]. Journal of Graphics, 2011, 32(2): 5-9. |
[5] | ZHU Er-xi, HE Yuan-jun. A New Algorithm of Polygons’ Boolean Operations Using Interior Angle [J]. Journal of Graphics, 2011, 32(2): 10-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||