Journal of Graphics ›› 2025, Vol. 46 ›› Issue (3): 614-624.DOI: 10.11996/JG.j.2095-302X.2025030614
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
WANG Changchang(), JIANG Kun, JIANG Kai, ZHANG Peng, SU Zhiyong(
)
Received:
2024-08-19
Accepted:
2024-11-25
Online:
2025-06-30
Published:
2025-06-13
Contact:
SU Zhiyong
About author:
First author contact:WANG Changchang (2000-), master student. His main research interest covers computer vision. E-mail:1812025077@qq.com
Supported by:
CLC Number:
WANG Changchang, JIANG Kun, JIANG Kai, ZHANG Peng, SU Zhiyong. Feedback-based iterative sampling denoising framework for point clouds with high-level noise[J]. Journal of Graphics, 2025, 46(3): 614-624.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025030614
Fig. 4 Schematic diagram of point clouds containing different types and levels of noise ((a) 1.00% gaussian noise point cloud; (b) 2.50% gaussian noise point cloud; (c) Gaussian average mixed noise point cloud; (d) Gaussian pulse mixed noise point cloud; (e) Clean point cloud)
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 40.19 | 46.37 | 46.64 | 49.42 | 50.73 | 50.86 |
Boxunion | 40.46 | 46.29 | 46.13 | 48.59 | 49.10 | 49.07 |
Cube | 40.07 | 46.40 | 46.47 | 48.07 | 48.48 | 48.54 |
Fandisk | 41.28 | 47.33 | 47.26 | 49.98 | 50.44 | 50.84 |
Horse | 38.89 | 43.35 | 44.06 | 45.62 | 45.68 | 47.05 |
Joint | 38.52 | 43.42 | 44.40 | 45.78 | 46.16 | 46.04 |
Mask | 45.26 | 50.22 | 52.05 | 51.99 | 51.88 | 52.76 |
Screwdriver | 36.19 | 40.57 | 40.67 | 43.93 | 44.96 | 46.10 |
Table 1 PSNR comparison results between this method and existing supervised methods on test models with 1.00% Gaussian noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 40.19 | 46.37 | 46.64 | 49.42 | 50.73 | 50.86 |
Boxunion | 40.46 | 46.29 | 46.13 | 48.59 | 49.10 | 49.07 |
Cube | 40.07 | 46.40 | 46.47 | 48.07 | 48.48 | 48.54 |
Fandisk | 41.28 | 47.33 | 47.26 | 49.98 | 50.44 | 50.84 |
Horse | 38.89 | 43.35 | 44.06 | 45.62 | 45.68 | 47.05 |
Joint | 38.52 | 43.42 | 44.40 | 45.78 | 46.16 | 46.04 |
Mask | 45.26 | 50.22 | 52.05 | 51.99 | 51.88 | 52.76 |
Screwdriver | 36.19 | 40.57 | 40.67 | 43.93 | 44.96 | 46.10 |
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 11.81 | 6.02 | 5.92 | 4.32 | 3.87 | 3.83 |
Boxunion | 11.80 | 6.30 | 6.52 | 4.83 | 4.53 | 4.55 |
Cube | 12.88 | 6.42 | 6.38 | 5.17 | 4.98 | 4.91 |
Fandisk | 11.55 | 5.94 | 6.07 | 4.35 | 4.02 | 3.98 |
Horse | 11.69 | 6.34 | 6.15 | 5.04 | 4.61 | 4.39 |
Joint | 12.93 | 7.18 | 6.65 | 5.56 | 5.20 | 5.23 |
Mask | 13.77 | 8.23 | 6.75 | 6.75 | 6.31 | 5.96 |
Screwdriver | 10.91 | 6.32 | 6.44 | 6.44 | 3.79 | 3.56 |
Table 2 CD comparison results between this method and existing supervised methods on test models with 1.00% Gaussian noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 11.81 | 6.02 | 5.92 | 4.32 | 3.87 | 3.83 |
Boxunion | 11.80 | 6.30 | 6.52 | 4.83 | 4.53 | 4.55 |
Cube | 12.88 | 6.42 | 6.38 | 5.17 | 4.98 | 4.91 |
Fandisk | 11.55 | 5.94 | 6.07 | 4.35 | 4.02 | 3.98 |
Horse | 11.69 | 6.34 | 6.15 | 5.04 | 4.61 | 4.39 |
Joint | 12.93 | 7.18 | 6.65 | 5.56 | 5.20 | 5.23 |
Mask | 13.77 | 8.23 | 6.75 | 6.75 | 6.31 | 5.96 |
Screwdriver | 10.91 | 6.32 | 6.44 | 6.44 | 3.79 | 3.56 |
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 34.46 | 36.51 | 36.24 | 45.26 | 47.17 | 47.69 |
Boxunion | 34.65 | 36.92 | 35.95 | 43.07 | 42.57 | 43.47 |
Cube | 34.52 | 37.61 | 36.53 | 44.87 | 44.85 | 45.97 |
Fandisk | 35.33 | 37.57 | 37.07 | 45.12 | 45.08 | 45.13 |
Horse | 32.70 | 35.75 | 35.12 | 41.64 | 42.39 | 42.48 |
Joint | 33.67 | 35.23 | 34.77 | 40.20 | 41.38 | 41.82 |
Mask | 38.88 | 46.11 | 44.15 | 49.63 | 50.87 | 49.98 |
Screwdriver | 30.74 | 33.04 | 31.81 | 38.54 | 39.70 | 40.20 |
Table 3 PSNR comparison results between this method and existing supervised methods on test models with 2.50% Gaussian noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 34.46 | 36.51 | 36.24 | 45.26 | 47.17 | 47.69 |
Boxunion | 34.65 | 36.92 | 35.95 | 43.07 | 42.57 | 43.47 |
Cube | 34.52 | 37.61 | 36.53 | 44.87 | 44.85 | 45.97 |
Fandisk | 35.33 | 37.57 | 37.07 | 45.12 | 45.08 | 45.13 |
Horse | 32.70 | 35.75 | 35.12 | 41.64 | 42.39 | 42.48 |
Joint | 33.67 | 35.23 | 34.77 | 40.20 | 41.38 | 41.82 |
Mask | 38.88 | 46.11 | 44.15 | 49.63 | 50.87 | 49.98 |
Screwdriver | 30.74 | 33.04 | 31.81 | 38.54 | 39.70 | 40.20 |
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 23.99 | 17.24 | 18.51 | 6.66 | 5.49 | 5.11 |
Boxunion | 23.36 | 16.66 | 19.57 | 8.94 | 8.73 | 7.65 |
Cube | 25.65 | 17.00 | 19.93 | 7.78 | 7.39 | 6.46 |
Fandisk | 22.97 | 16.76 | 18.44 | 7.80 | 7.01 | 6.81 |
Horse | 22.93 | 14.42 | 16.63 | 7.70 | 7.12 | 7.00 |
Joint | 23.15 | 17.75 | 19.96 | 10.04 | 8.72 | 8.14 |
Mask | 24.44 | 12.40 | 15.59 | 8.56 | 7.37 | 7.71 |
Screwdriver | 22.16 | 14.81 | 18.02 | 8.08 | 6.87 | 6.57 |
Table 4 CD comparison results between this method and existing supervised methods on test models with 2.50% Gaussian noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 23.99 | 17.24 | 18.51 | 6.66 | 5.49 | 5.11 |
Boxunion | 23.36 | 16.66 | 19.57 | 8.94 | 8.73 | 7.65 |
Cube | 25.65 | 17.00 | 19.93 | 7.78 | 7.39 | 6.46 |
Fandisk | 22.97 | 16.76 | 18.44 | 7.80 | 7.01 | 6.81 |
Horse | 22.93 | 14.42 | 16.63 | 7.70 | 7.12 | 7.00 |
Joint | 23.15 | 17.75 | 19.96 | 10.04 | 8.72 | 8.14 |
Mask | 24.44 | 12.40 | 15.59 | 8.56 | 7.37 | 7.71 |
Screwdriver | 22.16 | 14.81 | 18.02 | 8.08 | 6.87 | 6.57 |
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 36.52 | 40.94 | 40.04 | 47.22 | 48.78 | 49.46 |
Boxunion | 37.23 | 41.31 | 39.79 | 44.81 | 45.63 | 46.56 |
Cube | 36.71 | 41.86 | 40.10 | 46.26 | 46.88 | 47.70 |
Fandisk | 37.67 | 41.66 | 40.74 | 46.39 | 47.49 | 48.06 |
Horse | 32.92 | 36.53 | 35.62 | 41.71 | 42.94 | 42.98 |
Joint | 35.33 | 38.63 | 37.34 | 42.86 | 43.90 | 44.51 |
Mask | 35.62 | 40.14 | 38.48 | 47.97 | 49.16 | 47.88 |
Screwdriver | 32.53 | 35.59 | 34.21 | 39.39 | 41.87 | 41.97 |
Table 5 PSNR comparison results between this method and existing supervised methods on test models with Gaussian uniform mixed noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 36.52 | 40.94 | 40.04 | 47.22 | 48.78 | 49.46 |
Boxunion | 37.23 | 41.31 | 39.79 | 44.81 | 45.63 | 46.56 |
Cube | 36.71 | 41.86 | 40.10 | 46.26 | 46.88 | 47.70 |
Fandisk | 37.67 | 41.66 | 40.74 | 46.39 | 47.49 | 48.06 |
Horse | 32.92 | 36.53 | 35.62 | 41.71 | 42.94 | 42.98 |
Joint | 35.33 | 38.63 | 37.34 | 42.86 | 43.90 | 44.51 |
Mask | 35.62 | 40.14 | 38.48 | 47.97 | 49.16 | 47.88 |
Screwdriver | 32.53 | 35.59 | 34.21 | 39.39 | 41.87 | 41.97 |
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 17.92 | 10.48 | 12.03 | 5.39 | 4.71 | 4.34 |
Boxunion | 17.67 | 10.54 | 12.96 | 6.97 | 6.39 | 5.76 |
Cube | 19.25 | 10.56 | 12.98 | 6.30 | 5.94 | 5.36 |
Fandisk | 17.54 | 10.67 | 12.29 | 6.28 | 5.55 | 5.10 |
Horse | 22.94 | 13.45 | 15.81 | 7.61 | 6.68 | 6.68 |
Joint | 19.05 | 11.91 | 14.33 | 7.53 | 6.80 | 6.26 |
Mask | 40.27 | 22.81 | 28.54 | 10.11 | 8.88 | 9.93 |
Screwdriver | 18.00 | 11.00 | 13.47 | 7.14 | 5.49 | 5.43 |
Table 6 CD comparison results between this method and existing supervised methods on test models with Gaussian uniform mixed noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 17.92 | 10.48 | 12.03 | 5.39 | 4.71 | 4.34 |
Boxunion | 17.67 | 10.54 | 12.96 | 6.97 | 6.39 | 5.76 |
Cube | 19.25 | 10.56 | 12.98 | 6.30 | 5.94 | 5.36 |
Fandisk | 17.54 | 10.67 | 12.29 | 6.28 | 5.55 | 5.10 |
Horse | 22.94 | 13.45 | 15.81 | 7.61 | 6.68 | 6.68 |
Joint | 19.05 | 11.91 | 14.33 | 7.53 | 6.80 | 6.26 |
Mask | 40.27 | 22.81 | 28.54 | 10.11 | 8.88 | 9.93 |
Screwdriver | 18.00 | 11.00 | 13.47 | 7.14 | 5.49 | 5.43 |
Fig. 7 Comparison chart of denoising results of the test model with Gaussian uniform mixed noise ((a) Boxunion;(b) Cube; (c) Fandisk; (d) Tetrahedron)
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 37.00 | 41.66 | 40.75 | 47.62 | 49.40 | 50.02 |
Boxunion | 37.37 | 42.02 | 40.48 | 45.51 | 46.42 | 47.23 |
Cube | 37.08 | 42.60 | 40.95 | 46.80 | 47.13 | 47.88 |
Fandisk | 38.06 | 42.37 | 41.50 | 47.00 | 47.86 | 48.12 |
Horse | 33.70 | 37.15 | 36.19 | 42.21 | 43.52 | 43.26 |
Joint | 35.73 | 39.45 | 37.98 | 43.57 | 44.60 | 44.98 |
Mask | 36.10 | 41.16 | 39.33 | 48.10 | 49.36 | 48.62 |
Screwdriver | 32.73 | 36.27 | 34.89 | 39.93 | 42.89 | 42.67 |
Table 7 PSNR comparison results between this method and existing supervised methods on test models with Gaussian pulse mixed noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 37.00 | 41.66 | 40.75 | 47.62 | 49.40 | 50.02 |
Boxunion | 37.37 | 42.02 | 40.48 | 45.51 | 46.42 | 47.23 |
Cube | 37.08 | 42.60 | 40.95 | 46.80 | 47.13 | 47.88 |
Fandisk | 38.06 | 42.37 | 41.50 | 47.00 | 47.86 | 48.12 |
Horse | 33.70 | 37.15 | 36.19 | 42.21 | 43.52 | 43.26 |
Joint | 35.73 | 39.45 | 37.98 | 43.57 | 44.60 | 44.98 |
Mask | 36.10 | 41.16 | 39.33 | 48.10 | 49.36 | 48.62 |
Screwdriver | 32.73 | 36.27 | 34.89 | 39.93 | 42.89 | 42.67 |
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 17.22 | 9.75 | 11.14 | 5.16 | 4.43 | 4.05 |
Boxunion | 16.91 | 9.72 | 11.95 | 6.47 | 5.89 | 5.36 |
Cube | 18.43 | 9.73 | 11.79 | 6.02 | 5.78 | 5.23 |
Fandisk | 16.75 | 9.86 | 11.27 | 5.82 | 5.31 | 4.97 |
Horse | 21.96 | 12.44 | 14.76 | 7.35 | 6.36 | 6.44 |
Joint | 18.25 | 10.92 | 13.14 | 7.03 | 6.34 | 6.03 |
Mask | 38.31 | 20.50 | 26.11 | 9.97 | 8.67 | 8.98 |
Screwdriver | 17.14 | 10.07 | 12.46 | 6.74 | 4.97 | 5.01 |
Table 8 CD comparison results between this method and existing supervised methods on test models with Gaussian pulse mixed noise
模型 | 噪声点云 | DMR | Score | PCN | PF | 本文方法 |
---|---|---|---|---|---|---|
Tetrahedron | 17.22 | 9.75 | 11.14 | 5.16 | 4.43 | 4.05 |
Boxunion | 16.91 | 9.72 | 11.95 | 6.47 | 5.89 | 5.36 |
Cube | 18.43 | 9.73 | 11.79 | 6.02 | 5.78 | 5.23 |
Fandisk | 16.75 | 9.86 | 11.27 | 5.82 | 5.31 | 4.97 |
Horse | 21.96 | 12.44 | 14.76 | 7.35 | 6.36 | 6.44 |
Joint | 18.25 | 10.92 | 13.14 | 7.03 | 6.34 | 6.03 |
Mask | 38.31 | 20.50 | 26.11 | 9.97 | 8.67 | 8.98 |
Screwdriver | 17.14 | 10.07 | 12.46 | 6.74 | 4.97 | 5.01 |
迭代次数 | 反馈机制 | PSNR均值 |
---|---|---|
1 | 42.93 | |
2 | 43.02 | |
3 | 43.52 | |
2 | √ | 44.12 |
3 | √ | 44.59 |
4 | √ | 43.67 |
Table 9 Ablation experiment of this method on a test model with 2.5% Gaussian noise
迭代次数 | 反馈机制 | PSNR均值 |
---|---|---|
1 | 42.93 | |
2 | 43.02 | |
3 | 43.52 | |
2 | √ | 44.12 |
3 | √ | 44.59 |
4 | √ | 43.67 |
[1] | CHEN H, SHEN J. Denoising of point cloud data for computer-aided design, engineering, and manufacturing[J]. Engineering with Computers, 2018, 34(3): 523-541. |
[2] | ALEXA M, BEHR J, COHEN-OR D, et al. Computing and rendering point set surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1): 3-15. |
[3] | LIPMAN Y, COHEN-OR D, LEVIN D, et al. Parameterization-free projection for geometry reconstruction[J]. ACM Transactions on Graphics, 2007, 26(3): 22-es. |
[4] | ZHANG D B, LU X Q, QIN H, et al. Pointfilter: point cloud filtering via encoder-decoder modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(3): 2015-2027. |
[5] | RAKOTOSAONA M J, LA BARBERA V, GUERRERO P, et al. Pointcleannet: learning to denoise and remove outliers from dense point clouds[J]. Computer Graphics Forum, 2020, 39(1): 185-203. |
[6] | LUO S T, HU W. Score-based point cloud denoising[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 4563-4572. |
[7] | CASAJUS P H, RITSCHEL T, ROPINSKI T. Total denoising: unsupervised learning of 3D point cloud cleaning[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 52-60. |
[8] | LUO S T, HU W. Differentiable manifold reconstruction for point cloud denoising[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1330-1338. |
[9] |
YOUSAF S, QIN S Y. Closed-loop restoration approach to blurry images based on machine learning and feedback optimization[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5928-5941.
DOI PMID |
[10] | MA R J, ZHANG B, ZHOU Y C, et al. PID controller-guided attention neural network learning for fast and effective real photographs denoising[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(7): 3010-3023. |
[11] | MA R J, LI S Y, ZHANG B, et al. Towards fast and robust real image denoising with attentive neural network and PID controller[J]. IEEE Transactions on Multimedia, 2022, 24: 2366-2377. |
[12] |
MA R J, LI S Y, ZHANG B, et al. Meta PID attention network for flexible and efficient real-world noisy image denoising[J]. IEEE Transactions on Image Processing, 2022, 31: 2053-2066.
DOI PMID |
[13] | FLEISHMAN S, COHEN-OR D, SILVA C T. Robust moving least-squares fitting with sharp features[J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 544-552. |
[14] | HUANG H, LI D, ZHANG H, et al. Consolidation of unorganized point clouds for surface reconstruction[J]. ACM Transactions on Graphics, 2009, 28(5): 1-7. |
[15] | PREINER R, MATTAUSCH O, ARIKAN M, et al. Continuous projection for fast L1 reconstruction[J]. ACM Transactions on Graphics, 2014, 33(4): 47. |
[16] | AVRON H, SHARF A, GREIF C, et al. ℓ1-sparse reconstruction of sharp point set surfaces[J]. ACM Transactions on Graphics (TOG), 2010, 29(5): 135. |
[17] | SUN Y J, SCHAEFER S, WANG W P. Denoising point sets via L0 minimization[J]. Computer Aided Geometric Design, 2015, 35-36: 2-15. |
[18] | ZHENG Q, SHARF A, WAN G W, et al. Non-local scan consolidation for 3D urban scenes[J]. ACM Transactions on Graphics (TOG), 2010, 29(4): 94. |
[19] | ROVERI R, ÖZTIRELI A C, PANDELE I, et al. PointProNets: consolidation of point clouds with convolutional neural networks[J]. Computer Graphics Forum, 2018, 37(2): 87-99. |
[20] | GUERRERO P, KLEIMAN Y, OVSJANIKOV M, et al. PCPNET learning local shape properties from raw point clouds[J]. Computer Graphics Forum, 2018, 37(2): 75-85. |
[21] | WANG X T, FAN X P, ZHAO D B. PointFilterNet: a filtering network for point cloud denoising[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(3): 1276-1290. |
[22] | LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise:learning image restoration without clean data[EB/OL]. [2024-06-19]http://proceedings.mlr.press/v80/lehtinen18a.html. |
[23] | ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 16259-16268. |
[24] | SERNA A, MARCOTEGUI B, GOULETTE F, et al. Paris-rue-Madame database:a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods[EB/OL]. [2024-06-19]https://hal.science/hal-00963812. |
[25] | ZHANG S K, TAM H, LI Y K, et al. SceneDirector: interactive scene synthesis by simultaneously editing multiple objects in real-time[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 30(8): 4558-4569. |
[26] | ZHANG S K, LIU J H, LI Y K, et al. Automatic generation of commercial scenes[C]// The 31st ACM International Conference on Multimedia. New York: ACM, 2023: 1137-1147. |
[1] | LI Saisai, SUN Bowen, LI Dijia, PAN Wenjuan. Iterative optimization of robot surgery system interface design from the perspective of cognitive mechanisms [J]. Journal of Graphics, 2025, 46(2): 469-478. |
[2] | YU Wan-bo, FAN Qing-tao. Feature extraction of video data based on trigonometric function iteration [J]. Journal of Graphics, 2020, 41(4): 512-519. |
[3] | HUO Yan-wen, CAI Zhan-chuan . Geometric Iteration Method Based on Many-Knot Spline Polishing Functions [J]. Journal of Graphics, 2019, 40(1): 15-23. |
[4] | ZHANG Zhilin, MIAO Lanfang . 3D Scene Reconstruction System Based on Depth Image [J]. Journal of Graphics, 2018, 39(6): 1123-1129. |
[5] | LI Qiuyu1, ZHANG Yuming2, YANG Fumeng3, ZHAN Shu1. An Improved Optical Flow Algorithm for Micro Expression Detection in the Video Sequence [J]. Journal of Graphics, 2018, 39(3): 448-452. |
[6] | LIU Yu1, ZHOU Jiawei2. Progressive Fractal Facilitation Teaching Method for Composite Solid Dimensioning [J]. Journal of Graphics, 2018, 39(3): 579-586. |
[7] | YAN Lanlan, WEN Rongsheng, RAO Zhiyong. Extension of the Cubic Triangular Bézier Surface of the Same Degree [J]. Journal of Graphics, 2018, 39(1): 97-103. |
[8] | ZHAO Fuqun1,2, ZHOU Mingquan2,3. Improved Probability Iterative Closest Point Registration Algorithm [J]. Journal of Graphics, 2017, 38(1): 15-22. |
[9] | Tian Sukai, Ning Tao, Chen Zhitong. On Computation of Distance Extremum Points Based on Exact Surface Representation and Its Application in Tool Interferance Detection [J]. Journal of Graphics, 2016, 37(5): 620-625. |
[10] | Bai Daiping, Li Yanqin, Ding Jing, Yang Yong, Fan Yue. The Point Cloud Simplification Technology of 3D Optical Measurement Applied on Reverse Engineering [J]. Journal of Graphics, 2014, 35(3): 402-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||